Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

Ubiquitin sets the timer: impacts on aging and longevity

Protein homeostasis is essential for cellular function, organismal growth and viability. Damaged and aggregated proteins are turned over by two major proteolytic routes of the cellular quality-control pathways: the ubiquitin-proteasome system and autophagy. For both these pathways, ubiquitination provides the recognition signal for substrate selection. This Commentary discusses how ubiquitin-dependent proteolytic pathways are coordinated with stress- and aging-induced signals.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: UPS activity orchestrates the aging process.

Katie Vicari

References

  1. Komander, D. & Rape, M. Annu. Rev. Biochem. 81, 203–229 (2012).

    CAS  PubMed  Google Scholar 

  2. Vernace, V.A., Schmidt-Glenewinkel, T. & Figueiredo-Pereira, M.E. Aging Cell 6, 599–606 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Chen, Q., Ding, Q. & Keller, J.N. Biogerontology 6, 1–13 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Andersson, V., Hanzen, S., Liu, B.D., Molin, M. & Nystrom, T. Aging (Albany NY) 5, 802–812 (2013).

    Article  CAS  Google Scholar 

  5. Kruegel, U. et al. PLoS Genet. 7, e1002253 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Vilchez, D. et al. Nature 489, 263–268 (2012).

    Article  CAS  PubMed  Google Scholar 

  7. Safren, N. et al. PLoS ONE 9, e87513 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Liu, H.Y. & Pfleger, C.M. PLoS ONE 8, e32835 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lim, P.J. et al. J. Cell Biol. 187, 201–217 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Taylor, E.B. & Rutter, J. Biochem. Soc. Trans. 39, 1509–1513 (2011).

    Article  CAS  PubMed  Google Scholar 

  11. Segref, A. et al. Cell Metab. doi:10.1016/j.cmet.2014.01.016 (1 April 2014).

  12. Digaleh, H., Kiaei, M. & Khodagholi, F. Cell. Mol. Life Sci. 70, 4681–4694 (2013).

    Article  CAS  PubMed  Google Scholar 

  13. Henis-Korenblit, S. et al. Proc. Natl. Acad. Sci. USA 107, 9730–9735 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Heo, J.M. et al. Mol. Cell 40, 465–480 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lapierre, L.R. & Hansen, M. Trends Endocrinol. Metab. 23, 637–644 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Madeo, F., Tavernarakis, N. & Kroemer, G. Nat. Cell Biol. 12, 842–846 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. Kenyon, C.J. Nature 464, 504–512 (2010).

    Article  CAS  PubMed  Google Scholar 

  18. Matilainen, O., Arpalahti, L., Rantanen, V., Hautaniemi, S. & Holmberg, C.I. Cell Reports 3, 1980–1995 (2013).

    Article  CAS  PubMed  Google Scholar 

  19. Pickering, A.M., Staab, T.A., Tower, J., Sieburth, D. & Davies, K.J.A. J. Exp. Biol. 216, 543–553 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Han, Y., Lee, H., Park, J.C. & Yi, G.S. Mol. Cell. Proteomics 11, O111.014076 (2012).

    Article  PubMed  Google Scholar 

  21. Huang, H.J. & Tindall, D.J. Biochim. Biophys. Acta 1813, 1961–1964 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kuhlbrodt, K. et al. Nat. Cell Biol. 13, 273–281 (2011).

    Article  CAS  PubMed  Google Scholar 

  23. Choe, K.P., Przybysz, A.J. & Strange, K. Mol. Cell. Biol. 29, 2704–2715 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Villeneuve, N.F., Lau, A. & Zhang, D.D. Antioxid. Redox Signal. 13, 1699–1712 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Carrano, A.C., Liu, Z., Dillin, A. & Hunter, T. Nature 460, 396–399 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Leiser, S.F. & Kaeberlein, M. Biol. Chem. 391, 1131–1137 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dice, J.F. Exp. Gerontol. 24, 451–459 (1989).

    Article  CAS  PubMed  Google Scholar 

  28. Gaczynska, M., Osmulski, P.A. & Ward, W.F. Mech. Ageing Dev. 122, 235–254 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Ben-Zvi, A., Miller, E.A. & Morimoto, R.I. Proc. Natl. Acad. Sci. USA 106, 14914–14919 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rhie, B.H., Song, Y.H., Ryu, H.Y. & Ahn, S.H. Biochem. Biophys. Res. Commun. 439, 570–575 (2013).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

T.H. is supported by the Deutsche Forschungsgemeinschaft (CECAD, FOR885, SFB635 and DIP8 grant 2014376).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thorsten Hoppe.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kevei, É., Hoppe, T. Ubiquitin sets the timer: impacts on aging and longevity. Nat Struct Mol Biol 21, 290–292 (2014). https://doi.org/10.1038/nsmb.2806

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2806

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing