Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Structure of a pseudokinase-domain switch that controls oncogenic activation of Jak kinases

Abstract

The V617F mutation in the Jak2 pseudokinase domain causes myeloproliferative neoplasms, and the equivalent mutation in Jak1 (V658F) is found in T-cell leukemias. Crystal structures of wild-type and V658F-mutant human Jak1 pseudokinase reveal a conformational switch that remodels a linker segment encoded by exon 12, which is also a site of mutations in Jak2. This switch is required for V617F-mediated Jak2 activation and possibly for physiologic Jak activation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of the Jak1 pseudokinase domain.
Figure 2: Crystal structure of the V658F-mutant Jak1 pseudokinase domain.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Baker, S.J., Rane, S.G. & Reddy, E.P. Oncogene 26, 6724–6737 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Ghoreschi, K., Laurence, A. & O'Shea, J.J. Immunol. Rev. 228, 273–287 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Saharinen, P., Takaluoma, K. & Silvennoinen, O. Mol. Cell. Biol. 20, 3387–3395 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ihle, J.N. & Gilliland, D.G. Curr. Opin. Genet. Dev. 17, 8–14 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Haan, C., Behrmann, I. & Haan, S. J. Cell. Mol. Med. 14, 504–527 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. James, C. et al. Nature 434, 1144–1148 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Kralovics, R. et al. N. Engl. J. Med. 352, 1779–1790 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Levine, R.L. et al. Cancer Cell 7, 387–397 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Baxter, E.J. et al. Lancet 365, 1054–1061 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Tefferi, A. & Vainchenker, W. J. Clin. Oncol. 29, 573–582 (2011).

    Article  CAS  PubMed  Google Scholar 

  11. Jeong, E.G. et al. Clin. Cancer Res. 14, 3716–3721 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Staerk, J., Kallin, A., Demoulin, J.B., Vainchenker, W. & Constantinescu, S.N. J. Biol. Chem. 280, 41893–41899 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Scott, L.M. Am. J. Hematol. 86, 668–676 (2011).

    Article  CAS  PubMed  Google Scholar 

  14. Scott, L.M. et al. N. Engl. J. Med. 356, 459–468 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bandaranayake, R.M. et al. Nat. Struct. Mol. Biol. 19, 754–759 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wernig, G. et al. Blood 111, 3751–3759 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gnanasambandan, K., Magis, A. & Sayeski, P.P. Biochemistry 49, 9972–9984 (2010).

    Article  CAS  PubMed  Google Scholar 

  18. Dusa, A., Mouton, C., Pecquet, C., Herman, M. & Constantinescu, S.N. PLoS ONE 5, e11157 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Zhao, L. et al. J. Biol. Chem. 284, 26988–26998 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ungureanu, D. et al. Nat. Struct. Mol. Biol. 18, 971–976 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Valiev, M., Yang, J., Adams, J.A., Taylor, S.S. & Weare, J.H. J. Phys. Chem. B 111, 13455–13464 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Flex, E. et al. J. Exp. Med. 205, 751–758 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bercovich, D. et al. Lancet 372, 1484–1492 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. Mullighan, C.G. et al. Proc. Natl. Acad. Sci. USA 106, 9414–9418 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kearney, L. et al. Blood 113, 646–648 (2009).

    Article  CAS  PubMed  Google Scholar 

  26. Ashkenazy, H., Erez, E., Martz, E., Pupko, T. & Ben-Tal, N. Nucleic Acids Res. 38, W529–W33 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jin, J. & Pawson, T. Phil. Trans. R. Soc. Lond. B 367, 2540–2555 (2012).

    Article  CAS  Google Scholar 

  28. Pawson, T. & Kofler, M. Curr. Opin. Cell Biol. 21, 147–153 (2009).

    Article  CAS  PubMed  Google Scholar 

  29. Manning, G., Whyte, D.B., Martinez, R., Hunter, T. & Sudarsanam, S. Science 298, 1912–1934 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Zhang, Z. & Marshall, A.G. J. Am. Soc. Mass Spectrom. 9, 225–233 (1998).

    Article  CAS  PubMed  Google Scholar 

  31. Deshpande, A. et al. Leukemia 26, 708–715 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank beamline personnel at the Macromolecular Crystallography Resource at the Cornell High Energy Synchrotron Source (MacCHESS) and the Northeast Collaborative Access Team at the Advanced Photon Source, Argonne National Laboratory (NE-CAT) for assistance with data collection and processing. We thank K. Arnett for generous help with Jak1 autophosphorylation experiments. MacCHESS and NE-CAT are supported by grants from the US National Institutes of Health (NIH). This work was supported in part by NIH grant CA134660 (M.S.) and NIH training grants GM008313 (J.M.R.) and CA936132 (R.M.), and by funding from Novartis Institutes for Biomedical Research (M.J.E.).

Author information

Authors and Affiliations

Authors

Contributions

A.V.T., A.D., R.M. and J.M.R. designed and performed experiments and analyzed data. Y.J. carried out experiments. S.M.G. and C.U.K. contributed pressure cryocooling, and S.B.F. and J.A.M. contributed MS analysis. A.V.T., R.M., M.S., J.D.G. and M.J.E. designed experiments, analyzed data, and wrote the manuscript.

Corresponding author

Correspondence to Michael J Eck.

Ethics declarations

Competing interests

J.D.G. and M.J.E. are consultants for and receive research support from Novartis Institutes for Biomedical Research.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 and Supplementary Table 1 (PDF 2312 kb)

Supplementary Data Set 1

Consurf alignment (PDF 1856 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toms, A., Deshpande, A., McNally, R. et al. Structure of a pseudokinase-domain switch that controls oncogenic activation of Jak kinases. Nat Struct Mol Biol 20, 1221–1223 (2013). https://doi.org/10.1038/nsmb.2673

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2673

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer