Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Crystal structure of a substrate-free aspartate transporter

Abstract

Archaeal glutamate transporter homologs catalyze the coupled uptake of aspartate and three sodium ions. After the delivery of the substrate and sodium ions to the cytoplasm, the empty binding site must reorient to the outward-facing conformation to reset the transporter. Here, we report a crystal structure of the substrate-free transporter GltTk from Thermococcus kodakarensis, which provides insight into the mechanism of this essential step in the translocation cycle.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Aspartate-binding site.
Figure 2: Cation-binding sites.
Figure 3: Translocation cycle of archaeal aspartate transporters based on the available crystal structures.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Danbolt, N.C. Prog. Neurobiol. 65, 1–105 (2001).

    Article  CAS  Google Scholar 

  2. Zerangue, N. & Kavanaugh, M.P. Nature 383, 634–637 (1996).

    Article  CAS  Google Scholar 

  3. Ryan, R.M., Compton, E.L. & Mindell, J.A. J. Biol. Chem. 284, 17540–17548 (2009).

    Article  CAS  Google Scholar 

  4. Yernool, D., Boudker, O., Jin, Y. & Gouaux, E. Nature 431, 811–818 (2004).

    Article  CAS  Google Scholar 

  5. Boudker, O., Ryan, R.M., Yernool, D., Shimamoto, K. & Gouaux, E. Nature 445, 387–393 (2007).

    Article  CAS  Google Scholar 

  6. Reyes, N., Ginter, C. & Boudker, O. Nature 462, 880–885 (2009).

    Article  CAS  Google Scholar 

  7. Verdon, G. & Boudker, O. Nat. Struct. Mol. Biol. 19, 355–357 (2012).

    Article  CAS  Google Scholar 

  8. Groeneveld, M. & Slotboom, D.J. Biochemistry 49, 3511–3513 (2010).

    Article  CAS  Google Scholar 

  9. Groeneveld, M. & Slotboom, D.J. J. Mol. Biol. 372, 565–570 (2007).

    Article  CAS  Google Scholar 

  10. Bastug, T. et al. PLoS ONE 7, e33058 (2012).

    Article  CAS  Google Scholar 

  11. Huang, Z. & Tajkhorshid, E. Biophys. J. 99, 1416–1425 (2010).

    Article  CAS  Google Scholar 

  12. Larsson, H.P. et al. Proc. Natl. Acad. Sci. USA 107, 13912–13917 (2010).

    Article  CAS  Google Scholar 

  13. Slotboom, D.J., Konings, W.N. & Lolkema, J.S. J. Biol. Chem. 276, 10775–10781 (2001).

    Article  CAS  Google Scholar 

  14. Seal, R.P., Leighton, B.H. & Amara, S.G. Neuron 25, 695–706 (2000).

    Article  CAS  Google Scholar 

  15. Bendahan, A., Armon, A., Madani, N., Kavanaugh, M.P. & Kanner, B.I. J. Biol. Chem. 275, 37436–37442 (2000).

    Article  CAS  Google Scholar 

  16. Zhang, Y., Bendahan, A., Zarbiv, R., Kavanaugh, M.P. & Kanner, B.I. Proc. Natl. Acad. Sci. USA 95, 751–755 (1998).

    Article  CAS  Google Scholar 

  17. Kavanaugh, M.P., Bendahan, A., Zerangue, N., Zhang, Y. & Kanner, B.I. J. Biol. Chem. 272, 1703–1708 (1997).

    Article  CAS  Google Scholar 

  18. Rosental, N. & Kanner, B.I. J. Biol. Chem. 285, 21241–21248 (2010).

    Article  CAS  Google Scholar 

  19. Hänelt, I., Wunnicke, D., Bordignon, E., Steinhoff, H.J. & Slotboom, D.J. Nat. Struct. Mol. Biol. 20, 210–214 (2013).

    Article  Google Scholar 

  20. Georgieva, E.R., Borbat, P.P., Ginter, C., Freed, J.H. & Boudker, O. Nat. Struct. Mol. Biol. 20, 215–221 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank B. Poolman and M. Jaehme for critically reading the manuscript and the European Synchrotron Radiation Facility for beamline access. This work was supported by the Deutsche Forschungsgemeinschaft (I.H.) (HA 6322/1-1), the Netherlands Organisation for Scientific Research (NWO vidi 700.54.423 and vici 865.11.001 grants to D.J.S.) and the European Union (EU EDICT program and European Research Council starting grant 282083 to D.J.S.).

Author information

Authors and Affiliations

Authors

Contributions

All authors designed experiments. I.H. constructed the expression vector. S.J., A.G. and S.R. performed all other experiments. S.J., A.G., S.R. and D.J.S. analyzed data. S.J., A.G. and D.J.S. wrote the manuscript.

Corresponding author

Correspondence to Dirk Jan Slotboom.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 and Supplementary Tables 1 and 2 (PDF 5907 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jensen, S., Guskov, A., Rempel, S. et al. Crystal structure of a substrate-free aspartate transporter. Nat Struct Mol Biol 20, 1224–1226 (2013). https://doi.org/10.1038/nsmb.2663

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2663

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing