Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The Microprocessor controls the activity of mammalian retrotransposons

Abstract

More than half of the human genome is made of transposable elements whose ongoing mobilization is a driving force in genetic diversity; however, little is known about how the host regulates their activity. Here, we show that the Microprocessor (Drosha-DGCR8), which is required for microRNA biogenesis, also recognizes and binds RNAs derived from human long interspersed element 1 (LINE-1), Alu and SVA retrotransposons. Expression analyses demonstrate that cells lacking a functional Microprocessor accumulate LINE-1 mRNA and encoded proteins. Furthermore, we show that structured regions of the LINE-1 mRNA can be cleaved in vitro by Drosha. Additionally, we used a cell culture–based assay to show that the Microprocessor negatively regulates LINE-1 and Alu retrotransposition in vivo. Altogether, these data reveal a new role for the Microprocessor as a post-transcriptional repressor of mammalian retrotransposons and a defender of human genome integrity.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: DGCR8 binds a constellation of transcripts from repetitive elements.
Figure 2: The Microprocessor regulates the abundance of L1 mRNA and L1-encoded ORF1 protein.
Figure 3: The 5′ UTR of L1 mRNA is cleaved by immunopurified Drosha in vitro.
Figure 4: The Microprocessor negatively regulates L1 retrotransposition in vivo.
Figure 5: Alu is processed in vitro, and its retrotransposition is regulated by the Microprocessor.
Figure 6: LINE-1 regulation by the Microprocessor is Dicer and miRNA independent.
Figure 7: Model for the control of LINE-1 and Alu retrotransposition by the Microprocessor.

Accession codes

Primary accessions

Gene Expression Omnibus

References

  1. Beck, C.R., Garcia-Perez, J.L., Badge, R.M. & Moran, J.V. LINE-1 elements in structural variation and disease. Annu. Rev. Genomics Hum. Genet. 12, 187–215 (2011).

    Article  CAS  Google Scholar 

  2. Brouha, B. et al. Hot L1s account for the bulk of retrotransposition in the human population. Proc. Natl. Acad. Sci. USA 100, 5280–5285 (2003).

    Article  CAS  Google Scholar 

  3. Dewannieux, M., Esnault, C. & Heidmann, T. LINE-mediated retrotransposition of marked Alu sequences. Nat. Genet. 35, 41–48 (2003).

    Article  CAS  Google Scholar 

  4. Hancks, D.C., Goodier, J.L., Mandal, P.K., Cheung, L.E. & Kazazian, H.H. Retrotransposition of marked SVA elements by human L1s in cultured cells. Hum. Mol. Genet. 20, 3386–3400 (2011).

    Article  CAS  Google Scholar 

  5. Raiz, J. et al. The non-autonomous retrotransposon SVA is trans-mobilized by the human LINE-1 protein machinery. Nucleic Acids Res. 40, 1666–1683 (2012).

    Article  CAS  Google Scholar 

  6. Esnault, C., Maestre, J. & Heidmann, T. Human LINE retrotransposons generate processed pseudogenes. Nat. Genet. 24, 363–367 (2000).

    Article  CAS  Google Scholar 

  7. Wei, W. et al. Human L1 retrotransposition: cis preference versus trans complementation. Mol. Cell. Biol. 21, 1429–1439 (2001).

    Article  CAS  Google Scholar 

  8. Garcia-Perez, J.L., Doucet, A.J., Bucheton, A., Moran, J.V. & Gilbert, N. Distinct mechanisms for trans-mediated mobilization of cellular RNAs by the LINE-1 reverse transcriptase. Genome Res. 17, 602–611 (2007).

    Article  CAS  Google Scholar 

  9. Iskow, R.C. et al. Natural mutagenesis of human genomes by endogenous retrotransposons. Cell 141, 1253–1261 (2010).

    Article  CAS  Google Scholar 

  10. Kidd, J.M. et al. A human genome structural variation sequencing resource reveals insights into mutational mechanisms. Cell 143, 837–847 (2010).

    Article  CAS  Google Scholar 

  11. Baillie, J.K. et al. Somatic retrotransposition alters the genetic landscape of the human brain. Nature 479, 534–537 (2011).

    Article  CAS  Google Scholar 

  12. Boissinot, S., Entezam, A., Young, L., Munson, P.J. & Furano, A.V. The insertional history of an active family of L1 retrotransposons in humans. Genome Res. 14, 1221–1231 (2004).

    Article  CAS  Google Scholar 

  13. Martin, S.L. Ribonucleoprotein particles with LINE-1 RNA in mouse embryonal carcinoma cells. Mol. Cell. Biol. 11, 4804–4807 (1991).

    Article  CAS  Google Scholar 

  14. Moran, J.V. et al. High frequency retrotransposition in cultured mammalian cells. Cell 87, 917–927 (1996).

    Article  CAS  Google Scholar 

  15. Batzer, M.A. & Deininger, P.L. Alu repeats and human genomic diversity. Nat. Rev. Genet. 3, 370–379 (2002).

    Article  CAS  Google Scholar 

  16. Bennett, E.A. et al. Active Alu retrotransposons in the human genome. Genome Res. 18, 1875–1883 (2008).

    Article  CAS  Google Scholar 

  17. Yang, N. & Kazazian, H.H. L1 retrotransposition is suppressed by endogenously encoded small interfering RNAs in human cultured cells. Nat. Struct. Mol. Biol. 13, 763–771 (2006).

    Article  CAS  Google Scholar 

  18. Carmell, M.A. et al. MIWI2 is essential for spermatogenesis and repression of transposons in the mouse male germline. Dev. Cell 12, 503–514 (2007).

    Article  CAS  Google Scholar 

  19. Bushati, N. & Cohen, S.M. microRNA functions. Annu. Rev. Cell Dev. Biol. 23, 175–205 (2007).

    Article  CAS  Google Scholar 

  20. Denli, A.M., Tops, B.B.J., Plasterk, R.H.A., Ketting, R.F. & Hannon, G.J. Processing of primary microRNAs by the Microprocessor complex. Nature 432, 231–235 (2004).

    Article  CAS  Google Scholar 

  21. Gregory, R.I. et al. The Microprocessor complex mediates the genesis of microRNAs. Nature 432, 235–240 (2004).

    Article  CAS  Google Scholar 

  22. Han, J. et al. The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev. 18, 3016–3027 (2004).

    Article  CAS  Google Scholar 

  23. Kim, V.N., Han, J. & Siomi, M.C. Biogenesis of small RNAs in animals. Nat. Rev. Mol. Cell Biol. 10, 126–139 (2009).

    Article  CAS  Google Scholar 

  24. Macias, S. et al. DGCR8 HITS-CLIP reveals novel functions for the Microprocessor. Nat. Struct. Mol. Biol. 19, 760–766 (2012).

    Article  CAS  Google Scholar 

  25. Faulkner, G.J. et al. The regulated retrotransposon transcriptome of mammalian cells. Nat. Genet. 41, 563–571 (2009).

    Article  CAS  Google Scholar 

  26. Macia, A. et al. Epigenetic control of retrotransposon expression in human embryonic stem cells. Mol. Cell. Biol. 31, 300–316 (2011).

    Article  CAS  Google Scholar 

  27. Deininger, P. Alu elements: know the SINEs. Genome Biol. 12, 236 (2011).

    Article  CAS  Google Scholar 

  28. Speek, M. Antisense promoter of human L1 retrotransposon drives transcription of adjacent cellular genes. Mol. Cell. Biol. 21, 1973–1985 (2001).

    Article  CAS  Google Scholar 

  29. Carninci, P. et al. The transcriptional landscape of the mammalian genome. Science 309, 1559–1563 (2005).

    Article  CAS  Google Scholar 

  30. Garcia-Perez, J.L. et al. Epigenetic silencing of engineered L1 retrotransposition events in human embryonic carcinoma cells. Nature 466, 769–773 (2010).

    Article  CAS  Google Scholar 

  31. Yeom, K.-H., Lee, Y., Han, J., Suh, M.R. & Kim, V.N. Characterization of DGCR8/Pasha, the essential cofactor for Drosha in primary miRNA processing. Nucleic Acids Res. 34, 4622–4629 (2006).

    Article  CAS  Google Scholar 

  32. Perepelitsa-Belancio, V. & Deininger, P. RNA truncation by premature polyadenylation attenuates human mobile element activity. Nat. Genet. 35, 363–366 (2003).

    Article  CAS  Google Scholar 

  33. Belancio, V.P., Hedges, D.J. & Deininger, P. LINE-1 RNA splicing and influences on mammalian gene expression. Nucleic Acids Res. 34, 1512–1521 (2006).

    Article  CAS  Google Scholar 

  34. Wissing, S. et al. Reprogramming somatic cells into iPS cells activates LINE-1 retroelement mobility. Hum. Mol. Genet. 21, 208–218 (2012).

    Article  Google Scholar 

  35. Han, J. et al. Posttranscriptional crossregulation between Drosha and DGCR8. Cell 136, 75–84 (2009).

    Article  CAS  Google Scholar 

  36. Bourc'his, D. & Bestor, T.H. Meiotic catastrophe and retrotransposon reactivation in male germ cells lacking Dnmt3L. Nature 431, 96–99 (2004).

    Article  CAS  Google Scholar 

  37. Coufal, N.G. et al. L1 retrotransposition in human neural progenitor cells. Nature 460, 1127–1131 (2009).

    Article  CAS  Google Scholar 

  38. Wang, Y., Medvid, R., Melton, C., Jaenisch, R. & Blelloch, R. DGCR8 is essential for microRNA biogenesis and silencing of embryonic stem cell self-renewal. Nat. Genet. 39, 380–385 (2007).

    Article  CAS  Google Scholar 

  39. Naas, T.P. et al. An actively retrotransposing, novel subfamily of mouse L1 elements. EMBO J. 17, 590–597 (1998).

    Article  CAS  Google Scholar 

  40. DeBerardinis, R.J., Goodier, J.L., Ostertag, E.M. & Kazazian, H.H. Rapid amplification of a retrotransposon subfamily is evolving the mouse genome. Nat. Genet. 20, 288–290 (1998).

    Article  CAS  Google Scholar 

  41. Goodier, J.L., Ostertag, E.M., Du, K. & Kazazian, H.H. A novel active L1 retrotransposon subfamily in the mouse. Genome Res. 11, 1677–1685 (2001).

    Article  CAS  Google Scholar 

  42. Dombroski, B.A., Scott, A.F. & Kazazian, H.H. Two additional potential retrotransposons isolated from a human L1 subfamily that contains an active retrotransposable element. Proc. Natl. Acad. Sci. USA 90, 6513–6517 (1993).

    Article  CAS  Google Scholar 

  43. Morrish, T.A. et al. DNA repair mediated by endonuclease-independent LINE-1 retrotransposition. Nat. Genet. 31, 159–165 (2002).

    Article  CAS  Google Scholar 

  44. Bogerd, H.P. et al. Cellular inhibitors of long interspersed element 1 and Alu retrotransposition. Proc. Natl. Acad. Sci. USA 103, 8780–8785 (2006).

    Article  CAS  Google Scholar 

  45. Wagstaff, B.J., Barnerssoi, M. & Roy-Engel, A.M. Evolutionary conservation of the functional modularity of primate and murine LINE-1 elements. PLoS ONE 6, e19672 (2011).

    Article  CAS  Google Scholar 

  46. Han, J.S. & Boeke, J.D. A highly active synthetic mammalian retrotransposon. Nature 429, 314–318 (2004).

    Article  CAS  Google Scholar 

  47. Borchert, G.M., Lanier, W. & Davidson, B.L. RNA polymerase III transcribes human microRNAs. Nat. Struct. Mol. Biol. 13, 1097–1101 (2006).

    Article  CAS  Google Scholar 

  48. Guil, S. & Cáceres, J.F. The multifunctional RNA-binding protein hnRNP A1 is required for processing of miR-18a. Nat. Struct. Mol. Biol. 14, 591–596 (2007).

    Article  CAS  Google Scholar 

  49. Babiarz, J.E., Ruby, J.G., Wang, Y., Bartel, D.P. & Blelloch, R. Mouse ES cells express endogenous shRNAs, siRNAs, and other Microprocessor-independent, Dicer-dependent small RNAs. Genes Dev. 22, 2773–2785 (2008).

    Article  CAS  Google Scholar 

  50. He, L. & Hannon, G.J. MicroRNAs: small RNAs with a big role in gene regulation. Nat. Rev. Genet. 5, 522–531 (2004).

    Article  CAS  Google Scholar 

  51. Garcia-Perez, J.L. et al. LINE-1 retrotransposition in human embryonic stem cells. Hum. Mol. Genet. 16, 1569–1577 (2007).

    Article  CAS  Google Scholar 

  52. Kano, H. et al. L1 retrotransposition occurs mainly in embryogenesis and creates somatic mosaicism. Genes Dev. 23, 1303–1312 (2009).

    Article  CAS  Google Scholar 

  53. Muotri, A.R. et al. Somatic mosaicism in neuronal precursor cells mediated by L1 retrotransposition. Nature 435, 903–910 (2005).

    Article  CAS  Google Scholar 

  54. Lee, E. et al. Landscape of somatic retrotransposition in human cancers. Science 337, 967–971 (2012).

    Article  CAS  Google Scholar 

  55. Evrony, G.D. et al. Single-neuron sequencing analysis of L1 retrotransposition and somatic mutation in the human brain. Cell 151, 483–496 (2012).

    Article  CAS  Google Scholar 

  56. Solyom, S. et al. Extensive somatic L1 retrotransposition in colorectal tumors. Genome Res. 22, 2328–2338 (2012).

    Article  CAS  Google Scholar 

  57. Goodier, J.L., Cheung, L.E. & Kazazian, H.H. Mapping the LINE1 ORF1 protein interactome reveals associated inhibitors of human retrotransposition. Nucleic Acids Res. doi:10.1093/nar/gkt512 (2013).

  58. Stetson, D.B., Ko, J.S., Heidmann, T. & Medzhitov, R. Trex1 prevents cell-intrinsic initiation of autoimmunity. Cell 134, 587–598 (2008).

    Article  CAS  Google Scholar 

  59. Arjan-Odedra, S., Swanson, C.M., Sherer, N.M., Wolinsky, S.M. & Malim, M.H. Endogenous MOV10 inhibits the retrotransposition of endogenous retroelements but not the replication of exogenous retroviruses. Retrovirology 9, 53 (2012).

    Article  CAS  Google Scholar 

  60. Goodier, J.L., Cheung, L.E. & Kazazian, H.H. MOV10 RNA helicase is a potent inhibitor of retrotransposition in cells. PLoS Genet. 8, e1002941 (2012).

    Article  CAS  Google Scholar 

  61. Langmead, B., Trapnell, C., Pop, M. & Salzberg, S.L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009).

    Article  Google Scholar 

  62. Fujita, P.A. et al. The UCSC Genome Browser database: update 2011. Nucleic Acids Res. 39, D876–D882 (2011).

    Article  CAS  Google Scholar 

  63. Jurka, J. et al. Repbase update: a database of eukaryotic repetitive elements. Cytogenet. Genome Res. 110, 462–467 (2005).

    Article  CAS  Google Scholar 

  64. Richardson, J.E. fjoin: simple and efficient computation of feature overlaps. J. Comput. Biol. 13, 1457–1464 (2006).

    Article  CAS  Google Scholar 

  65. Slater, G.S.C. & Birney, E. Automated generation of heuristics for biological sequence comparison. BMC Bioinformatics 6, 31 (2005).

    Article  Google Scholar 

  66. Zisoulis, D.G. et al. Comprehensive discovery of endogenous Argonaute binding sites in Caenorhabditis elegans. Nat. Struct. Mol. Biol. 17, 173–179 (2010).

    Article  CAS  Google Scholar 

  67. Karginov, F.V. et al. Diverse endonucleolytic cleavage sites in the mammalian transcriptome depend upon microRNAs, Drosha, and additional nucleases. Mol. Cell 38, 781–788 (2010).

    Article  CAS  Google Scholar 

  68. Goodier, J.L., Zhang, L., Vetter, M.R. & Kazazian, H.H. LINE-1 ORF1 protein localizes in stress granules with other RNA-binding proteins, including components of RNA interference RNA-induced silencing complex. Mol. Cell. Biol. 27, 6469–6483 (2007).

    Article  CAS  Google Scholar 

  69. Wei, W., Morrish, T.A., Alisch, R.S. & Moran, J.V. A transient assay reveals that cultured human cells can accommodate multiple LINE-1 retrotransposition events. Anal. Biochem. 284, 435–438 (2000).

    Article  CAS  Google Scholar 

  70. Beck, C.R. et al. LINE-1 retrotransposition activity in human genomes. Cell 141, 1159–1170 (2010).

    Article  CAS  Google Scholar 

  71. Mathews, D.H., Sabina, J., Zuker, M. & Turner, D.H. Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J. Mol. Biol. 288, 911–940 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank N. Hastie and J.V. Moran for comments and critical reading of the manuscript. We also are grateful to M. Madej, J. Reddington and R. Meehan for advice on DNA methylation assays and to I. Adams for discussions. We thank R. Blelloch (University of California San Francisco, San Francisco, California, USA), V.N. Kim (Seoul National University, Seoul, Korea), S.L. Martin (University of Colorado School of Medicine, Aurora, Colorado, USA), A. Roy-Engel (Tulane Cancer Center, New Orleans, LA USA), T. Heidmann (Institut Gustave Roussy, Villejuif, France and Université Paris-Sud, Orsay, France) and J.V. Moran (Howard Hughes Medical Institute, University of Michigan Medical School, Ann Arbor, Michigan, USA) for their generous gifts of reagents. S.M. was supported by a long-term European Molecular Biology Organization postdoctoral fellowship. S.R.H. was supported by a Marie Curie Intra-European Fellowship and a Marie Curie CIG-Grant (PCIG10-GA-2011-303812). M.P. and E.E. were supported by the Spanish Ministry of Science (BIO2011-23920) and by the Sandra Ibarra Foundation (CSD2009-00080). M.P. is supported by the Novo Nordisk Foundation. J.L.G.-P. is supported by FP7-PEOPLE-2007-4-3-IRG, CICE-FEDER-P09-CTS-4980, PeS-FEDER-PI-002, FIS-FEDER-PI11/01489 and the Howard Hughes Medical Institute (IECS-55007420). J.F.C. was supported by Core funding from the Medical Research Council and by the Wellcome Trust (grant 095518/B/11/Z).

Author information

Authors and Affiliations

Authors

Contributions

S.R.H., S.M., J.L.G.-P. and J.F.C. conceived of, designed and interpreted the experiments. S.R.H., S.M., D.C. and N.F. performed the experiments and data analysis. M.P. and E.E. provided all the bioinformatics analysis, including mapping of the CLIP tags to the genome and statistical analysis. J.L.G.-P. and J.F.C. supervised the whole project. The manuscript was written by all authors.

Corresponding authors

Correspondence to José L Garcia-Perez or Javier F Cáceres.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 and Supplementary Tables 1, 2, 4 and 5 (PDF 18589 kb)

Supplementary Data Set 1

Supplementary Table 3 (XLS 125 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Heras, S., Macias, S., Plass, M. et al. The Microprocessor controls the activity of mammalian retrotransposons. Nat Struct Mol Biol 20, 1173–1181 (2013). https://doi.org/10.1038/nsmb.2658

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2658

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing