Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

The N-terminal acetylation of Sir3 stabilizes its binding to the nucleosome core particle

Abstract

The N-terminal acetylation of Sir3 is essential for heterochromatin establishment and maintenance in yeast, but its mechanism of action is unknown. The crystal structure of the N-terminally acetylated BAH domain of Saccharomyces cerevisiae Sir3 bound to the nucleosome core particle reveals that the N-terminal acetylation stabilizes the interaction of Sir3 with the nucleosome. Additionally, we present a new method for the production of protein–nucleosome complexes for structural analysis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sir3 N-terminal acetylation increases Sir3 BAH affinity for NCPs.
Figure 2: Sir3 N-terminal acetylation stabilizes the interaction of Sir3 BAH with the NCP.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Bühler, M. & Gasser, S.M. EMBO J. 28, 2149–2161 (2009).

    Article  Google Scholar 

  2. Buchberger, J.R. et al. Mol. Cell. Biol. 28, 6903–6918 (2008).

    Article  CAS  Google Scholar 

  3. Cubizolles, F., Martino, F., Perrod, S. & Gasser, S.M. Mol. Cell 21, 825–836 (2006).

    Article  CAS  Google Scholar 

  4. Ehrentraut, S. et al. Genes Dev. 25, 1835–1846 (2011).

    Article  CAS  Google Scholar 

  5. Onishi, M., Liou, G.G., Buchberger, J.R., Walz, T. & Moazed, D. Mol. Cell 28, 1015–1028 (2007).

    Article  CAS  Google Scholar 

  6. Wang, X., Connelly, J.J., Wang, C.L. & Sternglanz, R. Genetics 168, 547–551 (2004).

    Article  CAS  Google Scholar 

  7. Ruault, M., De Meyer, A., Loiodice, I. & Taddei, A. J. Cell Biol. 192, 417–431 (2011).

    Article  CAS  Google Scholar 

  8. Sampath, V. et al. Mol. Cell. Biol. 29, 2532–2545 (2009).

    Article  CAS  Google Scholar 

  9. van Welsem, T. et al. Mol. Cell. Biol. 28, 3861–3872 (2008).

    Article  CAS  Google Scholar 

  10. Armache, K.J., Garlick, J.D., Canzio, D., Narlikar, G.J. & Kingston, R.E. Science 334, 977–982 (2011).

    Article  CAS  Google Scholar 

  11. Wang, F. et al. Proc. Natl. Acad. Sci. USA 110, 8495–8500 (2013).

    Article  CAS  Google Scholar 

  12. Arnesen, T. PLoS Biol. 9, e1001074 (2011).

    Article  CAS  Google Scholar 

  13. Connelly, J.J. et al. Mol. Cell. Biol. 26, 3256–3265 (2006).

    Article  CAS  Google Scholar 

  14. Park, J.H., Cosgrove, M.S., Youngman, E., Wolberger, C. & Boeke, J.D. Nat. Genet. 32, 273–279 (2002).

    Article  CAS  Google Scholar 

  15. Martino, F. et al. Mol. Cell 33, 323–334 (2009).

    Article  CAS  Google Scholar 

  16. Luger, K., Mader, A.W., Richmond, R.K., Sargent, D.F. & Richmond, T.J. Nature 389, 251–260 (1997).

    Article  CAS  Google Scholar 

  17. Kabsch, W. Acta Crystallogr. D Biol. Crystallogr. 66, 133–144 (2010).

    Article  CAS  Google Scholar 

  18. Winn, M.D. et al. Acta Crystallogr. D Biol. Crystallogr. 67, 235–242 (2011).

    Article  CAS  Google Scholar 

  19. Hou, Z., Danzer, J.R., Fox, C.A. & Keck, J.L. Protein Sci. 15, 1182–1186 (2006).

    Article  CAS  Google Scholar 

  20. Vasudevan, D., Chua, E.Y. & Davey, C.A. J. Mol. Biol. 403, 1–10 (2010).

    Article  CAS  Google Scholar 

  21. Afonine, P.V. et al. Acta Crystallogr. D Biol. Crystallogr. 68, 352–367 (2012).

    Article  CAS  Google Scholar 

  22. Nicholls, R.A., Long, F. & Murshudov, G.N. Acta Crystallogr. D Biol. Crystallogr. 68, 404–417 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank G. Murshudov, F. Long, R. Nicholls, P. Emsley and H. Powell for troubleshooting and sharing tools for the software Refmac5, LibG, Prosmart, Coot and iMosflm. We thank M. Lamers and K. Nagai's laboratory for critical discussion of the results. We thank M. Yu for helping with the usage of the I24 beamlines at Diamond Light Source. F.M. is supported by the Swiss National Fund (PBGEP3-123695), a European Molecular Biology Organization Long Term Fellowship (ALTF419-2009) and a Marie Curie Intra European Long Term Fellowship (FP7-PEOPLE-2009-IEF-251794). N.A. is supported by the EU FP7 Marie Curie Initial training Nucleosome 4D network (4609511-238176). The project was supported by the UK Medical Research Council (MC-A025-5PJ80).

Author information

Authors and Affiliations

Authors

Contributions

D.R., F.M. and N.A. designed the experiments. F.M. and N.A. purified all the proteins, DNA and complexes used, prepared, optimized and cryoprotected the crystals, solved the structure and wrote the manuscript. I.S.F. froze the crystals. F.M., N.A. and I.S.F. collected the X-ray diffraction data. N.A. and S.H.M. performed the binding experiments. S.Y.P.-C. performed the MALDI. D.R. revised the manuscript.

Corresponding author

Correspondence to Fabrizio Martino.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3 and Supplementary Table 1 (PDF 4433 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arnaudo, N., Fernández, I., McLaughlin, S. et al. The N-terminal acetylation of Sir3 stabilizes its binding to the nucleosome core particle. Nat Struct Mol Biol 20, 1119–1121 (2013). https://doi.org/10.1038/nsmb.2641

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2641

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing