Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Resource
  • Published:

The RNA-binding protein repertoire of embryonic stem cells

Abstract

RNA-binding proteins (RBPs) have essential roles in RNA-mediated gene regulation, and yet annotation of RBPs is limited mainly to those with known RNA-binding domains. To systematically identify the RBPs of embryonic stem cells (ESCs), we here employ interactome capture, which combines UV cross-linking of RBP to RNA in living cells, oligo(dT) capture and MS. From mouse ESCs (mESCs), we have defined 555 proteins constituting the mESC mRNA interactome, including 283 proteins not previously annotated as RBPs. Of these, 68 new RBP candidates are highly expressed in ESCs compared to differentiated cells, implicating a role in stem-cell physiology. Two well-known E3 ubiquitin ligases, Trim25 (also called Efp) and Trim71 (also called Lin41), are validated as RBPs, revealing a potential link between RNA biology and protein-modification pathways. Our study confirms and expands the atlas of RBPs, providing a useful resource for the study of the RNA-RBP network in stem cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Identification of RBPs in mESCs.
Figure 2: Characteristics of the mESC mRNA interactome in comparison to known RBPs.
Figure 3: Validation of RNA-binding activity of novel RBP candidates.
Figure 4: Regulation of RBPs in stem cells.
Figure 5: Trim25 and Trim71 are RNA-binding E3 ubiquitin ligases.

Similar content being viewed by others

References

  1. Smith, A.G. Embryo-derived stem cells: of mice and men. Annu. Rev. Cell Dev. Biol. 17, 435–462 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Nichols, J. & Smith, A. Naive and primed pluripotent states. Cell Stem Cell 4, 487–492 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. Loh, Y.-H. et al. The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nat. Genet. 38, 431–440 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Orkin, S.H. & Hochedlinger, K. Chromatin connections to pluripotency and cellular reprogramming. Cell 145, 835–850 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kim, J., Chu, J., Shen, X., Wang, J. & Orkin, S.H. An extended transcriptional network for pluripotency of embryonic stem cells. Cell 132, 1049–1061 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. Chen, X. et al. Integration of external signaling pathways with the core transcriptional network in embryonic stem cells. Cell 133, 1106–1117 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. Young, R.A. Control of the embryonic stem cell state. Cell 144, 940–954 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hansson, J. et al. Highly coordinated proteome dynamics during reprogramming of somatic cells to pluripotency. Cell Rep. 2, 1579–1592 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Polo, J.M. et al. A molecular roadmap of reprogramming somatic cells into iPS cells. Cell 151, 1617–1632 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sampath, P. et al. A hierarchical network controls protein translation during murine embryonic stem cell self-renewal and differentiation. Cell Stem Cell 2, 448–460 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. Lu, R. et al. Systems-level dynamic analyses of fate change in murine embryonic stem cells. Nature 462, 358–362 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gebauer, F. & Hentze, M.W. Molecular mechanisms of translational control. Nat. Rev. Mol. Cell Biol. 5, 827–835 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Abaza, I. & Gebauer, F. Trading translation with RNA-binding proteins. RNA 14, 404–409 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Glisovic, T., Bachorik, J.L., Yong, J. & Dreyfuss, G. RNA-binding proteins and post-transcriptional gene regulation. FEBS Lett. 582, 1977–1986 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kishore, S., Luber, S. & Zavolan, M. Deciphering the role of RNA-binding proteins in the post-transcriptional control of gene expression. Brief. Funct. Genomics 9, 391–404 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tsvetanova, N.G., Klass, D.M., Salzman, J. & Brown, P.O. Proteome-wide search reveals unexpected RNA-binding proteins in Saccharomyces cerevisiae. PLoS ONE 5, e12671 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Scherrer, T., Mittal, N., Janga, S.C. & Gerber, A.P. A screen for RNA-binding proteins in yeast indicates dual functions for many enzymes. PLoS ONE 5, e15499 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Castello, A. et al. Insights into RNA biology from an atlas of mammalian mRNA-binding proteins. Cell 149, 1393–1406 (2012).

    Article  CAS  PubMed  Google Scholar 

  19. Baltz, A.G. et al. The mRNA-bound proteome and its global occupancy profile on protein-coding transcripts. Mol. Cell 46, 674–690 (2012).

    Article  CAS  PubMed  Google Scholar 

  20. Choi, Y.D. & Dreyfuss, G. Isolation of the heterogeneous nuclear RNA-ribonucleoprotein complex (hnRNP): a unique supramolecular assembly. Proc. Natl. Acad. Sci. USA 81, 7471–7475 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mitchell, S.F., Jain, S., She, M. & Parker, R. Global analysis of yeast mRNPs. Nat. Struct. Mol. Biol. 20, 127–133 (2013).

    Article  CAS  PubMed  Google Scholar 

  22. König, J. et al. iCLIP reveals the function of hnRNP particles in splicing at individual nucleotide resolution. Nat. Struct. Mol. Biol. 17, 909–915 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Sugimoto, Y. et al. Analysis of CLIP and iCLIP methods for nucleotide-resolution studies of protein-RNA interactions. Genome Biol. 13, R67 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Lau, C.-K., Bachorik, J.L. & Dreyfuss, G. Gemin5-snRNA interaction reveals an RNA binding function for WD repeat domains. Nat. Struct. Mol. Biol. 16, 486–491 (2009).

    Article  CAS  PubMed  Google Scholar 

  25. Radivojac, P. et al. Intrinsic disorder and functional proteomics. Biophys. J. 92, 1439–1456 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Tompa, P. & Csermely, P. The role of structural disorder in the function of RNA and protein chaperones. FASEB J. 18, 1169–1175 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Dyson, H.J. & Wright, P.E. Intrinsically unstructured proteins and their functions. Nat. Rev. Mol. Cell Biol. 6, 197–208 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Han, T.W. et al. Cell-free formation of RNA granules: bound RNAs identify features and components of cellular assemblies. Cell 149, 768–779 (2012).

    Article  CAS  PubMed  Google Scholar 

  29. Kato, M. et al. Cell-free formation of RNA granules: low complexity sequence domains form dynamic fibers within hydrogels. Cell 149, 753–767 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chi, S.W., Zang, J.B., Mele, A. & Darnell, R.B. Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps. Nature 460, 479–486 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ule, J. et al. CLIP identifies Nova-regulated RNA networks in the brain. Science 302, 1212–1215 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Cho, J. et al. LIN28A is a suppressor of ER-associated translation in embryonic stem cells. Cell 151, 765–777 (2012).

    Article  CAS  PubMed  Google Scholar 

  33. Wong, D.J. et al. Module map of stem cell genes guides creation of epithelial cancer stem cells. Cell Stem Cell 2, 333–344 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ben-Porath, I. et al. An embryonic stem cell–like gene expression signature in poorly differentiated aggressive human tumors. Nat. Genet. 40, 499–507 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bhattacharya, B. et al. Gene expression in human embryonic stem cell lines: unique molecular signature. Blood 103, 2956–2964 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Ivanova, N. et al. Dissecting self-renewal in stem cells with RNA interference. Nature 442, 533–538 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Liu, Z., Scannell, D.R., Eisen, M.B. & Tjian, R. Control of embryonic stem cell lineage commitment by core promoter factor, TAF3. Cell 146, 720–731 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wong, R.C.-B. et al. L1TD1 is a marker for undifferentiated human embryonic stem cells. PLoS ONE 6, e19355 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Närvä, E. et al. RNA-binding protein L1TD1 interacts with LIN28 via RNA and is required for human embryonic stem cell self-renewal and cancer cell proliferation. Stem Cells 30, 452–460 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Iwabuchi, K.A. et al. ECAT11/L1td1 is enriched in ESCs and rapidly activated during iPSC generation, but it is dispensable for the maintenance and induction of pluripotency. PLoS ONE 6, e20461 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kim, J. et al. A Myc network accounts for similarities between embryonic stem and cancer cell transcription programs. Cell 143, 313–324 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chang, H.-M. et al. Trim71 cooperates with microRNAs to repress Cdkn1a expression and promote embryonic stem cell proliferation. Nat. Commun. 3, 923 (2012).

    Article  PubMed  CAS  Google Scholar 

  43. Loedige, I. & Filipowicz, W. TRIM-NHL proteins take on miRNA regulation. Cell 136, 818–820 (2009).

    Article  CAS  PubMed  Google Scholar 

  44. Loedige, I., Gaidatzis, D., Sack, R., Meister, G. & Filipowicz, W. The mammalian TRIM-NHL protein TRIM71/LIN-41 is a repressor of mRNA function. Nucleic Acids Res. 41, 518–532 (2013).

    Article  CAS  PubMed  Google Scholar 

  45. Hatakeyama, S. TRIM proteins and cancer. Nat. Rev. Cancer 11, 792–804 (2011).

    Article  CAS  PubMed  Google Scholar 

  46. Tian, L. et al. Characterization and potential function of a novel pre-implantation embryo-specific RING finger protein: TRIML1. Mol. Reprod. Dev. 76, 656–664 (2009).

    Article  CAS  PubMed  Google Scholar 

  47. Ding, L. et al. A genome-scale RNAi screen for Oct4 modulators defines a role of the Paf1 complex for embryonic stem cell identity. Cell Stem Cell 4, 403–415 (2009).

    Article  CAS  PubMed  Google Scholar 

  48. Hu, G. et al. A genome-wide RNAi screen identifies a new transcriptional module required for self-renewal. Genes Dev. 23, 837–848 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Chia, N.-Y. et al. A genome-wide RNAi screen reveals determinants of human embryonic stem cell identity. Nature 468, 316–320 (2010).

    Article  CAS  PubMed  Google Scholar 

  50. Benz, C., Mulindwa, J., Ouna, B. & Clayton, C. The Trypanosoma brucei zinc-finger protein ZC3H18 is involved in differentiation. Mol. Biochem. Parasitol. 177, 148–151 (2011).

    Article  CAS  PubMed  Google Scholar 

  51. Beekman, R. et al. Sequential gain of mutations in severe congenital neutropenia progressing to acute myeloid leukemia. Blood 119, 5071–5077 (2012).

    Article  CAS  PubMed  Google Scholar 

  52. Gewurz, B.E. et al. Genome-wide siRNA screen for mediators of NF-κB activation. Proc. Natl. Acad. Sci. USA 109, 2467–2472 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Denis, C.L. & Chen, J. The CCR4–NOT complex plays diverse roles in mRNA metabolism. Prog. Nucleic Acid Res. Mol. Biol. 73, 221–250 (2003).

    Article  CAS  PubMed  Google Scholar 

  54. Zheng, X. et al. Cnot1, Cnot2, and Cnot3 maintain mouse and human ESC identity and inhibit extraembryonic differentiation. Stem Cells 30, 910–922 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kabe, Y. et al. The role of human MBF1 as a transcriptional coactivator. J. Biol. Chem. 274, 34196–34202 (1999).

    Article  CAS  PubMed  Google Scholar 

  56. Takemaru, K.-i., Li, F.Q., Ueda, H. & Hirose, S. Multiprotein bridging factor 1 (MBF1) is an evolutionarily conserved transcriptional coactivator that connects a regulatory factor and TATA element-binding protein. Proc. Natl. Acad. Sci. USA 94, 7251–7256 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Takemaru, K.-i., Harashima, S., Ueda, H. & Hirose, S. Yeast coactivator MBF1 mediates GCN4-dependent transcriptional activation. Mol. Cell Biol. 18, 4971–4976 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Brendel, C., Gelman, L. & Auwerx, J. Multiprotein bridging factor-1 (MBF-1) is a cofactor for nuclear receptors that regulate lipid metabolism. Mol. Endocrinol. 16, 1367–1377 (2002).

    Article  CAS  PubMed  Google Scholar 

  59. Dragoni, I., Mariotti, M., Consalez, G.G., Soria, M.R. & Maier, J.a. EDF-1, a novel gene product down-regulated in human endothelial cell differentiation. J. Biol. Chem. 273, 31119–31124 (1998).

    Article  CAS  PubMed  Google Scholar 

  60. Yasuhara, N. et al. Triggering neural differentiation of ES cells by subtype switching of importin-α. Nat. Cell Biol. 9, 72–79 (2007).

    Article  CAS  PubMed  Google Scholar 

  61. Nisole, S., Stoye, J.P. & Saïb, A. TRIM family proteins: retroviral restriction and antiviral defence. Nat. Rev. Microbiol. 3, 799–808 (2005).

    Article  CAS  PubMed  Google Scholar 

  62. Urano, T. et al. Efp targets 14–3-3σ for proteolysis and promotes breast tumour growth. Nature 417, 871–875 (2002).

    Article  CAS  PubMed  Google Scholar 

  63. Gack, M.U. et al. TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity. Nature 446, 916–920 (2007).

    Article  CAS  PubMed  Google Scholar 

  64. Suzuki, T. et al. Estrogen-responsive finger protein as a new potential biomarker for breast cancer. Clin. Cancer Res. 11, 6148–6154 (2005).

    Article  CAS  PubMed  Google Scholar 

  65. Sakuma, M. et al. Expression of estrogen-responsive finger protein (Efp) is associated with advanced disease in human epithelial ovarian cancer. Gynecol. Oncol. 99, 664–670 (2005).

    Article  CAS  PubMed  Google Scholar 

  66. Nakayama, H., Sano, T., Motegi, A., Oyama, T. & Nakajima, T. Increasing 14-3-3 sigma expression with declining estrogen receptor alpha and estrogen-responsive finger protein expression defines malignant progression of endometrial carcinoma. Pathol. Int. 55, 707–715 (2005).

    Article  CAS  PubMed  Google Scholar 

  67. Rybak, A. et al. The let-7 target gene mouse lin-41 is a stem cell specific E3 ubiquitin ligase for the miRNA pathway protein Ago2. Nat. Cell Biol. 11, 1411–1420 (2009).

    Article  CAS  PubMed  Google Scholar 

  68. Chen, J., Lai, F. & Niswander, L. The ubiquitin ligase mLin41 temporally promotes neural progenitor cell maintenance through FGF signaling. Genes Dev. 26, 803–815 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Maller Schulman, B.R., Liang, X. & Stahlhut, C. The let-7 microRNA target gene, Mlin41/Trim71 is required for mouse embryonic survival and neural tube closure. Cell Cycle 7, 3935–3942 (2008).

    Article  PubMed  Google Scholar 

  70. Slack, F.J. et al. The lin-41 RBCC gene acts in the C. elegans heterochronic pathway between the let-7 regulatory RNA and the LIN-29 transcription factor. Mol. Cell 5, 659–669 (2000).

    Article  CAS  PubMed  Google Scholar 

  71. Kanamoto, T., Terada, K., Yoshikawa, H. & Furukawa, T. Cloning and regulation of the vertebrate homologue of lin-41 that functions as a heterochronic gene in Caenorhabditis elegans. Dev. Dyn. 235, 1142–1149 (2006).

    Article  CAS  PubMed  Google Scholar 

  72. Lin, Y.-C. et al. Human TRIM71 and its nematode homologue are targets of let-7 microRNA and its zebrafish orthologue is essential for development. Mol. Biol. Evol. 24, 2525–2534 (2007).

    Article  CAS  PubMed  Google Scholar 

  73. Cano, F., Miranda-Saavedra, D. & Lehner, P.J. RNA-binding E3 ubiquitin ligases: novel players in nucleic acid regulation. Biochem. Soc. Trans. 38, 1621–1626 (2010).

    Article  CAS  PubMed  Google Scholar 

  74. Vinuesa, C.G. et al. A RING-type ubiquitin ligase family member required to repress follicular helper T cells and autoimmunity. Nature 435, 452–458 (2005).

    Article  CAS  PubMed  Google Scholar 

  75. Yu, D. et al. Roquin represses autoimmunity by limiting inducible T-cell co-stimulator messenger RNA. Nature 450, 299–303 (2007).

    Article  CAS  PubMed  Google Scholar 

  76. Glasmacher, E. et al. Roquin binds inducible costimulator mRNA and effectors of mRNA decay to induce microRNA-independent post-transcriptional repression. Nat. Immunol. 11, 725–733 (2010).

    Article  CAS  PubMed  Google Scholar 

  77. Castello, A. et al. System-wide identification of RNA-binding proteins by interactome capture. Nat. Protoc. 8, 491–500 (2013).

    Article  CAS  PubMed  Google Scholar 

  78. Boersema, P.J., Raijmakers, R., Lemeer, S., Mohammed, S. & Heck, A.J.R. Multiplex peptide stable isotope dimethyl labeling for quantitative proteomics. Nat. Protoc. 4, 484–494 (2009).

    Article  CAS  PubMed  Google Scholar 

  79. Rappsilber, J., Mann, M. & Ishihama, Y. Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat. Protoc. 2, 1896–1906 (2007).

    Article  CAS  PubMed  Google Scholar 

  80. Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367–1372 (2008).

    Article  CAS  PubMed  Google Scholar 

  81. Cox, J. et al. Andromeda: a peptide search engine integrated into the MaxQuant environment. J. Proteome Res. 10, 1794–1805 (2011).

    Article  CAS  PubMed  Google Scholar 

  82. Jain, E. et al. Infrastructure for the life sciences: design and implementation of the UniProt website. BMC Bioinformatics 10, 136 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Gentleman, R.C. et al. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol. 5, R80 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Smyth, G.K. Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Stat. Appl. Genet. Mol. Biol. 3, 3 (2004).

    Article  Google Scholar 

  85. Lunde, B.M., Moore, C. & Varani, G. RNA-binding proteins: modular design for efficient function. Nat. Rev. Mol. Cell Biol. 8, 479–490 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Dosztányi, Z., Csizmok, V., Tompa, P. & Simon, I. IUPred: web server for the prediction of intrinsically unstructured regions of proteins based on estimated energy content. Bioinformatics 21, 3433–3434 (2005).

    Article  PubMed  CAS  Google Scholar 

  87. Guttman, M. et al. Ab initio reconstruction of cell type–specific transcriptomes in mouse reveals the conserved multi-exonic structure of lincRNAs. Nat. Biotechnol. 28, 503–510 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Trapnell, C. et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat. Protoc. 7, 562–578 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank H. Chang for teaching and sharing Python codes, A. Cho, Y.C. Chang and H. Kim for technical help, and all members of our laboratories for helpful discussion. We gratefully acknowledge the EMBL Proteomics Core Facility for technical support. We are grateful to G. Dreyfuss (University of Pennsylvania), F.G. Wulczyn (Charité–Universitätsmedizin Berlin), S.H. Baek (Seoul National University), H.-Y. Kao (Case Western Reserve University), D.-E. Zhang (The Scripps Research Institute), D. Rimm (Yale School of Medicine), K. Helin (Københavns Universitet) and Y. Kawakami (University of Minnesota) for valuable plasmids and antibodies. This work was supported by the Research Center Program (EM1202) of the Institute for Basic Science (S.C.K., H.Y., K.T.Y. and V.N.K.) and the BK21 Research Fellowships (S.C.K. and H.Y.) from the Ministry of Education, Science and Technology of Korea. Work in the group of M.W.H. was funded by an ERC Advanced grant (ERC-2011-ADG_20110310) to M.W.H.

Author information

Authors and Affiliations

Authors

Contributions

S.C.K., A.C., M.W.H. and V.N.K. designed the project; S.C.K., H.Y. and K.T.Y. performed biochemical experiments and analyzed ESC-related data; K.E., S.F. and J.K. performed and analyzed MS experiments; B.F., A.C. and M.W.H. analyzed the mRNA interactome; S.C.K. and V.N.K. wrote the manuscript.

Corresponding author

Correspondence to V Narry Kim.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 (PDF 3089 kb)

Supplementary Data Set 1

Supplementary Tables 1–11 (XLS 1931 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kwon, S., Yi, H., Eichelbaum, K. et al. The RNA-binding protein repertoire of embryonic stem cells. Nat Struct Mol Biol 20, 1122–1130 (2013). https://doi.org/10.1038/nsmb.2638

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2638

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research