Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Allosteric mechanism of water-channel gating by Ca2+–calmodulin

Abstract

Calmodulin (CaM) is a universal regulatory protein that communicates the presence of calcium to its molecular targets and correspondingly modulates their function. This key signaling protein is important for controlling the activity of hundreds of membrane channels and transporters. However, understanding of the structural mechanisms driving CaM regulation of full-length membrane proteins has remained elusive. In this study, we determined the pseudoatomic structure of full-length mammalian aquaporin-0 (AQP0, Bos taurus) in complex with CaM, using EM to elucidate how this signaling protein modulates water-channel function. Molecular dynamics and functional mutation studies reveal how CaM binding inhibits AQP0 water permeability by allosterically closing the cytoplasmic gate of AQP0. Our mechanistic model provides new insight, only possible in the context of the fully assembled channel, into how CaM regulates multimeric channels by facilitating cooperativity between adjacent subunits.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Purification and pseudoatomic model of the AQP0–CaM complex determined by EM.
Figure 2: Hydrophobic interactions involved in AQP0–CaM complex formation.
Figure 3: Calmodulin restricts the dynamics of AQP0.
Figure 4: CaM binding closes the AQP0 cytoplasmic constriction site gate II (CSII).
Figure 5: Mechanism of Ca2+–CaM regulation of AQP0.

Similar content being viewed by others

Accession codes

Primary accessions

Electron Microscopy Data Bank

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Saimi, Y. & Ling, K.Y. Calmodulin activation of calcium-dependent sodium channels in excised membrane patches of Paramecium. Science 249, 1441–1444 (1990).

    CAS  PubMed  Google Scholar 

  2. Zühlke, R.D., Pitt, G.S., Deisseroth, K., Tsien, R.W. & Reuter, H. Calmodulin supports both inactivation and facilitation of L-type calcium channels. Nature 399, 159–162 (1999).

    PubMed  Google Scholar 

  3. Tan, H.L. et al. A calcium sensor in the sodium channel modulates cardiac excitability. Nature 415, 442–447 (2002).

    CAS  PubMed  Google Scholar 

  4. Saimi, Y. & Kung, C. Calmodulin as an ion channel subunit. Annu. Rev. Physiol. 64, 289–311 (2002).

    CAS  PubMed  Google Scholar 

  5. Meissner, G. Evidence of a role for calmodulin in the regulation of calcium release from skeletal muscle sarcoplasmic reticulum. Biochemistry 25, 244–251 (1986).

    CAS  PubMed  Google Scholar 

  6. Smith, J.S., Rousseau, E. & Meissner, G. Calmodulin modulation of single sarcoplasmic reticulum Ca2+-release channels from cardiac and skeletal muscle. Circ. Res. 64, 352–359 (1989).

    CAS  PubMed  Google Scholar 

  7. Zalk, R., Lehnart, S.E. & Marks, A.R. Modulation of the ryanodine receptor and intracellular calcium. Annu. Rev. Biochem. 76, 367–385 (2007).

    CAS  PubMed  Google Scholar 

  8. Scott, K., Sun, Y., Beckingham, K. & Zuker, C.S. Calmodulin regulation of Drosophila light-activated channels and receptor function mediates termination of the light response in vivo. Cell 91, 375–383 (1997).

    CAS  PubMed  Google Scholar 

  9. Zhang, Z. et al. Activation of Trp3 by inositol 1,4,5-trisphosphate receptors through displacement of inhibitory calmodulin from a common binding domain. Proc. Natl. Acad. Sci. USA 98, 3168–3173 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhu, M.X. Multiple roles of calmodulin and other Ca2+-binding proteins in the functional regulation of TRP channels. Pflugers Arch. 451, 105–115 (2005).

    CAS  PubMed  Google Scholar 

  11. Peracchia, C., Sotkis, A., Wang, X.G., Peracchia, L.L. & Persechini, A. Calmodulin directly gates gap junction channels. J. Biol. Chem. 275, 26220–26224 (2000).

    CAS  PubMed  Google Scholar 

  12. Sotkis, A. et al. Calmodulin colocalizes with connexins and plays a direct role in gap junction channel gating. Cell Commun. Adhes. 8, 277–281 (2001).

    CAS  PubMed  Google Scholar 

  13. Peracchia, C. Chemical gating of gap junction channels; roles of calcium, pH and calmodulin. Biochim. Biophys. Acta 1662, 61–80 (2004).

    CAS  PubMed  Google Scholar 

  14. Németh-Cahalan, K.L. & Hall, J.E. pH and calcium regulate the water permeability of aquaporin 0. J. Biol. Chem. 275, 6777–6782 (2000).

    PubMed  Google Scholar 

  15. Varadaraj, K., Kumari, S., Shiels, A. & Mathias, R.T. Regulation of aquaporin water permeability in the lens. Invest. Ophthalmol. Vis. Sci. 46, 1393–1402 (2005).

    PubMed  Google Scholar 

  16. Babu, Y.S. et al. Three-dimensional structure of calmodulin. Nature 315, 37–40 (1985).

    CAS  PubMed  Google Scholar 

  17. Zhang, M., Tanaka, T. & Ikura, M. Calcium-induced conformational transition revealed by the solution structure of apo calmodulin. Nat. Struct. Biol. 2, 758–767 (1995).

    CAS  PubMed  Google Scholar 

  18. Kuboniwa, H. et al. Solution structure of calcium-free calmodulin. Nat. Struct. Biol. 2, 768–776 (1995).

    CAS  PubMed  Google Scholar 

  19. Chou, J.J., Li, S., Klee, C.B. & Bax, A. Solution structure of Ca2+–calmodulin reveals flexible hand-like properties of its domains. Nat. Struct. Biol. 8, 990–997 (2001).

    CAS  PubMed  Google Scholar 

  20. Vogel, H.J. The Merck Frosst Award Lecture 1994. Calmodulin: a versatile calcium mediator protein. Biochem. Cell Biol. 72, 357–376 (1994).

    CAS  PubMed  Google Scholar 

  21. Yamniuk, A.P. & Vogel, H.J. Calmodulin's flexibility allows for promiscuity in its interactions with target proteins and peptides. Mol. Biotechnol. 27, 33–57 (2004).

    CAS  PubMed  Google Scholar 

  22. Gonen, T. & Walz, T. The structure of aquaporins. Q. Rev. Biophys. 39, 361–396 (2006).

    CAS  PubMed  Google Scholar 

  23. Murata, K. et al. Structural determinants of water permeation through aquaporin-1. Nature 407, 599–605 (2000).

    CAS  PubMed  Google Scholar 

  24. de Groot, B.L., Frigato, T., Helms, V. & Grubmuller, H. The mechanism of proton exclusion in the aquaporin-1 water channel. J. Mol. Biol. 333, 279–293 (2003).

    CAS  PubMed  Google Scholar 

  25. Bloemendal, H., Zweers, A., Vermorken, F., Dunia, I. & Benedetti, E.L. The plasma membranes of eye lens fibres. Biochemical and structural characterization. Cell Differ. 1, 91–106 (1972).

    CAS  PubMed  Google Scholar 

  26. Németh-Cahalan, K.L., Kalman, K. & Hall, J.E. Molecular basis of pH and Ca2+ regulation of aquaporin water permeability. J. Gen. Physiol. 123, 573–580 (2004).

    PubMed  PubMed Central  Google Scholar 

  27. Mulders, S.M. et al. Water channel properties of major intrinsic protein of lens. J. Biol. Chem. 270, 9010–9016 (1995).

    CAS  PubMed  Google Scholar 

  28. Chandy, G., Zampighi, G.A., Kreman, M. & Hall, J.E. Comparison of the water transporting properties of MIP and AQP1. J. Membr. Biol. 159, 29–39 (1997).

    CAS  PubMed  Google Scholar 

  29. Harries, W.E., Akhavan, D., Miercke, L.J., Khademi, S. & Stroud, R.M. The channel architecture of aquaporin 0 at a 2.2-A resolution. Proc. Natl. Acad. Sci. USA 101, 14045–14050 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Gonen, T. et al. Lipid-protein interactions in double-layered two-dimensional AQP0 crystals. Nature 438, 633–638 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Bok, D., Dockstader, J. & Horwitz, J. Immunocytochemical localization of the lens main intrinsic polypeptide (MIP26) in communicating junctions. J. Cell Biol. 92, 213–220 (1982).

    CAS  PubMed  Google Scholar 

  32. Costello, M.J., McIntosh, T.J. & Robertson, J.D. Distribution of gap junctions and square array junctions in the mammalian lens. Invest. Ophthalmol. Vis. Sci. 30, 975–989 (1989).

    CAS  PubMed  Google Scholar 

  33. Gonen, T., Sliz, P., Kistler, J., Cheng, Y. & Walz, T. Aquaporin-0 membrane junctions reveal the structure of a closed water pore. Nature 429, 193–197 (2004).

    CAS  PubMed  Google Scholar 

  34. Girsch, S.J. & Peracchia, C. Calmodulin interacts with a C-terminus peptide from the lens membrane protein MIP26. Curr. Eye Res. 10, 839–849 (1991).

    CAS  PubMed  Google Scholar 

  35. Reichow, S.L. & Gonen, T. Noncanonical binding of calmodulin to aquaporin-0: implications for channel regulation. Structure 16, 1389–1398 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Schumacher, M.A., Rivard, A.F., Bachinger, H.P. & Adelman, J.P. Structure of the gating domain of a Ca2+-activated K+ channel complexed with Ca2+/calmodulin. Nature 410, 1120–1124 (2001).

    CAS  PubMed  Google Scholar 

  37. Van Petegem, F., Chatelain, F.C. & Minor, D.L. Jr. Insights into voltage-gated calcium channel regulation from the structure of the CaV1.2 IQ domain–Ca2+/calmodulin complex. Nat. Struct. Mol. Biol. 12, 1108–1115 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Mori, M.X., Vander Kooi, C.W., Leahy, D.J. & Yue, D.T. Crystal structure of the CaV2 IQ domain in complex with Ca2+/calmodulin: high-resolution mechanistic implications for channel regulation by Ca2+. Structure 16, 607–620 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Sarhan, M.F., Tung, C.C., Van Petegem, F. & Ahern, C.A. Crystallographic basis for calcium regulation of sodium channels. Proc. Natl. Acad. Sci. USA 109, 3558–3563 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Samsó, M. & Wagenknecht, T. Apocalmodulin and Ca2+-calmodulin bind to neighboring locations on the ryanodine receptor. J. Biol. Chem. 277, 1349–1353 (2002).

    PubMed  Google Scholar 

  41. Huang, X., Fruen, B., Farrington, D.T., Wagenknecht, T. & Liu, Z. Calmodulin-binding locations on the skeletal and cardiac ryanodine receptors. J. Biol. Chem. 287, 30328–30335 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Frank, J. et al. SPIDER and WEB: processing and visualization of images in 3D electron microscopy and related fields. J. Struct. Biol. 116, 190–199 (1996).

    CAS  PubMed  Google Scholar 

  43. Grigorieff, N. FREALIGN: high-resolution refinement of single particle structures. J. Struct. Biol. 157, 117–125 (2007).

    CAS  PubMed  Google Scholar 

  44. Pettersen, E.F. et al. UCSF Chimera: a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    CAS  PubMed  Google Scholar 

  45. Yap, K.L., Yuan, T., Mal, T.K., Vogel, H.J. & Ikura, M. Structural basis for simultaneous binding of two carboxy-terminal peptides of plant glutamate decarboxylase to calmodulin. J. Mol. Biol. 328, 193–204 (2003).

    CAS  PubMed  Google Scholar 

  46. Fallon, J.L. et al. Crystal structure of dimeric cardiac L-type calcium channel regulatory domains bridged by Ca2+* calmodulins. Proc. Natl. Acad. Sci. USA 106, 5135–5140 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Kim, E.Y. et al. Multiple C-terminal tail Ca2+/CaMs regulate CaV1.2 function but do not mediate channel dimerization. EMBO J. 29, 3924–3938 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Smart, O.S., Neduvelil, J.G., Wang, X., Wallace, B.A. & Sansom, M.S. HOLE: a program for the analysis of the pore dimensions of ion channel structural models. J. Mol. Graph. 14, 354–360, 376 (1996).

    CAS  PubMed  Google Scholar 

  49. Jensen, M.Ø. & Mouritsen, O.G. Single-channel water permeabilities of Escherichia coli aquaporins AqpZ and GlpF. Biophys. J. 90, 2270–2284 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Jensen, M.Ø. et al. Dynamic control of slow water transport by aquaporin 0: implications for hydration and junction stability in the eye lens. Proc. Natl. Acad. Sci. USA 105, 14430–14435 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Hashido, M., Ikeguchi, M. & Kidera, A. Comparative simulations of aquaporin family: AQP1, AQPZ, AQP0 and GlpF. FEBS Lett. 579, 5549–5552 (2005).

    CAS  PubMed  Google Scholar 

  52. Yang, B. & Verkman, A.S. Water and glycerol permeabilities of aquaporins 1–5 and MIP determined quantitatively by expression of epitope-tagged constructs in Xenopus oocytes. J. Biol. Chem. 272, 16140–16146 (1997).

    CAS  PubMed  Google Scholar 

  53. Yuan, T. & Vogel, H.J. Calcium-calmodulin-induced dimerization of the carboxyl-terminal domain from petunia glutamate decarboxylase: a novel calmodulin-peptide interaction motif. J. Biol. Chem. 273, 30328–30335 (1998).

    CAS  PubMed  Google Scholar 

  54. Gut, H. et al. A common structural basis for pH- and calmodulin-mediated regulation in plant glutamate decarboxylase. J. Mol. Biol. 392, 334–351 (2009).

    CAS  PubMed  Google Scholar 

  55. Xia, X.M. et al. Mechanism of calcium gating in small-conductance calcium-activated potassium channels. Nature 395, 503–507 (1998).

    CAS  PubMed  Google Scholar 

  56. Schumacher, M.A., Crum, M. & Miller, M.C. Crystal structures of apocalmodulin and an apocalmodulin/SK potassium channel gating domain complex. Structure 12, 849–860 (2004).

    CAS  PubMed  Google Scholar 

  57. Wang, C., Wang, H.G., Xie, H. & Pitt, G.S. Ca2+/CaM controls Ca2+-dependent inactivation of NMDA receptors by dimerizing the NR1 C termini. J. Neurosci. 28, 1865–1870 (2008).

    PubMed  PubMed Central  Google Scholar 

  58. Shi, L.B., Skach, W.R. & Verkman, A.S. Functional independence of monomeric CHIP28 water channels revealed by expression of wild-type mutant heterodimers. J. Biol. Chem. 269, 10417–10422 (1994).

    CAS  PubMed  Google Scholar 

  59. Mindell, J.A. & Grigorieff, N. Accurate determination of local defocus and specimen tilt in electron microscopy. J. Struct. Biol. 142, 334–347 (2003).

    PubMed  Google Scholar 

  60. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    PubMed  Google Scholar 

  61. Phillips, J.C. et al. Scalable molecular dynamics with NAMD. J. Comput. Chem. 26, 1781–1802 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. MacKerell, A.D. et al. All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B 102, 3586–3616 (1998).

    CAS  PubMed  Google Scholar 

  63. Klauda, J.B., Brooks, B.R., MacKerell, A.D. Jr., Venable, R.M. & Pastor, R.W. An ab initio study on the torsional surface of alkanes and its effect on molecular simulations of alkanes and a DPPC bilayer. J. Phys. Chem. B 109, 5300–5311 (2005).

    CAS  PubMed  Google Scholar 

  64. Jorgensen, W.L., Chandrasekhar, J., Madura, J.D., Impey, R.W. & Klein, M.L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79, 926–935 (1983).

    CAS  Google Scholar 

  65. Essmann, U. et al. A smooth particle mesh Ewald method. J. Chem. Phys. 103, 8577–8593 (1995).

    CAS  Google Scholar 

  66. Grubmuller, H., Heller, H., Windermuth, A. & Schulten, K. Generalized Verlet algorithm for efficient molecular dynamics simulations with long-range interactions. Mol. Simul. 6, 121–142 (1991).

    Google Scholar 

  67. Martyna, G.J., Tobiax, D.J. & Klein, M.L. Constant pressure molecular dynamics algorithms. J. Chem. Phys. 101, 4177–4189 (1994).

    CAS  Google Scholar 

  68. Feller, S.E., Zhang, Y., Pastor, R.W. & Brooks, B.R. Constant pressure molecular dynamics simulation: The Langevin piston method. J. Chem. Phys. 103, 4613–4621 (1995).

    CAS  Google Scholar 

  69. Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. J Mol. Graph. 14, 33–38 (1996).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank M. Sarhan (Howard Hughes Medical Institute (HHMI), Janelia Farm Research Campus) for help with ITC and D. Shi (HHMI, Janelia Farm Research Campus) for help with various aspects of EM. Research in the laboratory of J.E.H. is supported by US National Institutes of Health (NIH) National Eye Institute grant EY5661 (J.E.H.). Research by D.M.C. was supported by the NIH National Library of Medicine Biomedical Informatics Research Training Program Award, no. LM007443. Research by S.L.R. was supported by the Ruth L. Kirschtein National Research Service Award from NIH. Research in the laboratory of D.J.T. is supported by NIH National Institute of Neurological Disorders–National Institute of General Medical Sciences grant GM86685 and US National Science Foundation grant CHE-0750175 (D.J.T.). M.H. is supported by a fellowship from the German Academy of Sciences Leopoldina. This work was supported in part by NIH grant R01 GM079233 (T.G.). Research in the laboratory of T.G. is funded by the HHMI (T.G.).

Author information

Authors and Affiliations

Authors

Contributions

S.L.R., D.M.C., J.E.H. and T.G. conceived of and designed the experiments for this work. All authors contributed to data analysis and preparation of the manuscript. S.L.R. performed protein purification, EM and ITC binding studies on the AQP0–CaM complexes. D.M.C., J.A.F., M.H. and D.J.T. performed setup and analysis of molecular dynamics simulations. D.M.C. and K.L.N.-C. performed oocyte permeability measurements, construction of oocyte expression constructs and analysis of oocyte permeability data.

Corresponding authors

Correspondence to James E Hall or Tamir Gonen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 Purification of the cross-linked AQP0–CaM complex.

Schematic of crosslinking and purification of the AQP0–CaM complex (EDC/NHS – crosslinking reagents; IEX – ion exchange chromatography; SEC – size exclusion chromatography). (b and c) Separation of AQP0–CaM from unreacted AQP0 by IEX. (UV(280nm) – blue; conductivity – red). Selected fractions for all steps indicated in grey. (d) Separation of the AQP0–CaM from free CaM by SEC. (inset) Molecular weight calibration showing elution of the AQP0–CaM complex at ~180 KDa; blue dot. (e) SDS-PAGE (lane 1) CaM alone, treated with EDC/NHS resulted in two bands, corresponding to CaM ~13 KDa and the crosslinked CaM dimer (CaM)2 ~22 KDa. (lane 2) AQP0 alone, treated with EDC/NHS resulted in at least four bands, corresponding to the AQP0 monomer ~26 KDa, the crosslinked dimer (AQP0)2 ~52 KDa, trimer (AQP0)3 ~80 KDa, and tetramer (AQP0)4 ~110 KDa. (lane 3) Crude crosslinking products following addition of activated CaM to AQP0 (corresponding to step 2 in (a)). (lane 4) Flow-through from IEX #1. (lanes 5 and 6) Fractions from IEX #1 containing unreacted AQP0 and crosslinked AQP0–CaM products, respectively. (lane 7) Flow-through from IEX #2. (lanes 8 and 9) Fraction from IEX #2 containing unreacted AQP0 and crosslinked AQP0–CaM products, respectively. (lane 10) SEC peak fraction containing AQP0–CaM. Note lanes 3, 6, 9 and 10 contain two unique bands at ~39 KDa and ~65 KDa correspond to the crosslinked 1:1 AQP0–CaM complex and the 2:1 (AQP0)2–CaM denatured complexes.

Supplementary Figure 2 Construction of the pseudoatomic model of AQP0–CaM derived by EM.

(Step 1) The crystallographic structure of AQP0 (PDB 2B6P)29 was chosen for the transmembrane domain of the complex. (Step 2) The cytoplasmic C-terminal domains (residues 223-263) of AQP0 were removed. (Step 3) The AQP0 transmembrane domain was computationally fit into the EM map using Chimera44. (Step 4) The α-helical region of the AQP0CBD (residues 227–241) was threaded onto the two anti-parallel α-helices (Helix A and Helix B) in the ptGAD–CaM structure (PDB 1NWD)45. The AQP0CBD residue L234 occupies the site equivalent to the major hydrophobic anchoring residue in the ptGAD–CaM complex (W485)45. Positioning L234 at this site accommodated connectivity between the AQP0CBD and the transmembrane domain. A different hydrophobic residue within the AQP0CBD (such as L227 and/or V230) may also act as a primary anchor, but this would require a CaM conformation that is unique from the ptGAD–CaM complex. (Step 5) The resulting structure of CaM bound to two AQP0CBD α-helices was placed into each vacant lobe in the EM map, with the N-termini of the AQP0CBD α-helices facing the last transmembrane α-helix in AQP0. (Step 6) Linker domains (residues 223–226) were modeled connecting the transmembrane domain of AQP0 to each AQP0CBD α-helix (labeled, and shown in grey). The final model was subjected to energy minimization to remove steric interactions. A 25 Å map calculated from this model gave a crosscorrelation of 0.95 with the experimental map.

Supplementary Figure 3 Isothermal titration calorimetry (ITC) of CaM binding toAQP0CBD peptides.

(a) (top panels) Raw heats of binding obtained by ITC when CaM was mixed with AQP0CBD peptides (residue 223–242 from the cow sequence shown in Figure 2a) corresponding to the wildtype and alanine point mutations made at the conserved hydrophobic residues indicated. (bottom panels) Binding isotherms fitted to the raw data using two-state and single-state binding models as indicated. (b) Table of thermodynamic parameters obtained by fitting the ITC data to a two-state or single-state binding model (N = number of binding sites, Ka = association constant, ΔH = change in enthalpy, -TΔS = change in entropy, ΔG = Gibb's free energy, subscript 1 and 2 refer to the first and second binding step for data fit to a two-state model.

Supplementary Figure 4 Superposition of starting models for molecular dynamics simulations.

(a) Superposition showing the starting conformations of AQP0 for used for MD simulations. Two MD simulations were generated, one using AQP0 in complex with Calmodulin (AQP0Cam-bound; blue) and the second using AQP0 alone (AQP0CaM-free; yellow). For the CaMfree system, a starting conformation of the AQP0 tetramer (residues 5 to 239) in the absence of CaM was created by deleting the CaM coordinates from the AQP0–CaM complex. In this way, the starting conformations of AQP0 in the two simulations were identical (r.m.s.d. = 0.0 Å). (b) Zoom view, showing that for both systems, the CSII sites of AQP0 were unaltered from the original 2B6P model. Note that CaM is not shown in this overlay.

Supplementary Figure 5 Immunoblot analysis of AQP0 membrane expression in Xenopus oocytes.

Immunoblot analysis of AQP0 membrane expression in Xenopus oocytes.Full-length gel showing immunoblot analysis of AQP0 constructs corresponding to Figure 4e, (inset) within the main text. Each lane corresponds to the membrane fraction for cells of that were uninjected (UI) or injected with RNA for wildtype AQP0 (Y149) and AQP0 point mutants (G149), (L149) and (S149). Samples were separated on SDS-PAGE and blotted with AQP0 antibody (H-44).

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 (PDF 628 kb)

Dynamics of AQP0 CSII gating residue Tyr149.

The AQP0 protein is depicted as grey cartoon with the CSII residues (Tyr149 and Phe75) displayed as blue sticks and water molecules displayed as red and white atoms. Note the movement of Tyr149 (lower right) out of the pore that coincides with a rush of water molecules across the CSII gate. (MOV 4762 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reichow, S., Clemens, D., Freites, J. et al. Allosteric mechanism of water-channel gating by Ca2+–calmodulin. Nat Struct Mol Biol 20, 1085–1092 (2013). https://doi.org/10.1038/nsmb.2630

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2630

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing