Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structurally encoded intraclass differences in EphA clusters drive distinct cell responses

Abstract

Functional outcomes of ephrin binding to Eph receptors (Ephs) range from cell repulsion to adhesion. Here we used cell collapse and stripe assays, showing contrasting effects of human ephrinA5 binding to EphA2 and EphA4. Despite equivalent ligand binding affinities, EphA4 triggered greater cell collapse, whereas EphA2-expressing cells adhered better to ephrinA5-coated surfaces. Chimeric receptors showed that the ectodomain is a major determinant of cell response. We report crystal structures of EphA4 ectodomain alone and in complexes with ephrinB3 and ephrinA5. These revealed closed clusters with a dimeric or circular arrangement in the crystal lattice, contrasting with extended arrays previously observed for EphA2 ectodomain. Localization microscopy showed that ligand-stimulated EphA4 induces smaller clusters than does EphA2. Mutant Ephs link these characteristics to interactions observed in the crystal lattices, suggesting a mechanism by which distinctive ectodomain surfaces determine clustering, and thereby signaling, properties.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Stimulation of EphA2 and EphA4 triggers different cell responses.
Figure 2: EphA4 ectodomain forms oligomeric units in crystal lattices.
Figure 3: Properties of the EphA4 HI-loop area and sushi dimerization region.
Figure 4: Eph ectodomains can control Eph clustering and function.
Figure 5: Non-ligand-bound EphA2 clustering depends on Eph-Eph ectodomain interactions.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

Swiss-Prot

References

  1. Klein, R. Eph/ephrin signalling during development. Development 139, 4105–4109 (2012).

    Article  CAS  Google Scholar 

  2. Batlle, E. & Wilkinson, D.G. Molecular mechanisms of cell segregation and boundary formation in development and tumorigenesis. Cold Spring Harb. Perspect. Biol. 4, 211–226 (2012).

    Article  Google Scholar 

  3. Pitulescu, M.E. & Adams, R.H. Eph/ephrin molecules: a hub for signaling and endocytosis. Genes Dev. 24, 2480–2492 (2010).

    Article  CAS  Google Scholar 

  4. Pasquale, E.B. Eph receptors and ephrins in cancer: bidirectional signalling and beyond. Nat. Rev. Cancer 10, 165–180 (2010).

    Article  CAS  Google Scholar 

  5. Brantley–Sieders, D.M. Clinical relevance of Ephs and ephrins in cancer: lessons from breast, colorectal, and lung cancer profiling. Semin. Cell Dev. Biol. 23, 102–108 (2012).

    Article  Google Scholar 

  6. Nievergall, E., Lackmann, M. & Janes, P.W. Eph-dependent cell-cell adhesion and segregation in development and cancer. Cell Mol. Life Sci. 69, 1813–1842 (2012).

    Article  CAS  Google Scholar 

  7. Gale, N.W. et al. Eph receptors and ligands comprise two major specificity subclasses and are reciprocally compartmentalized during embryogenesis. Neuron 17, 9–19 (1996).

    Article  CAS  Google Scholar 

  8. Bowden, T.A. et al. Structural plasticity of eph receptor A4 facilitates cross-class ephrin signaling. Structure 17, 1386–1397 (2009).

    Article  CAS  Google Scholar 

  9. Noberini, R., Rubio de la Torre, E. & Pasquale, E.B. Profiling Eph receptor expression in cells and tissues: a targeted mass spectrometry approach. Cell Adh. Migr. 6, 102–112 (2012).

    Article  Google Scholar 

  10. Himanen, J.P. Ectodomain structures of Eph receptors. Semin. Cell Dev. Biol. 23, 35–42 (2012).

    Article  CAS  Google Scholar 

  11. Janes, P.W., Nievergall, E. & Lackmann, M. Concepts and consequences of Eph receptor clustering. Semin. Cell Dev. Biol. 23, 43–50 (2012).

    Article  CAS  Google Scholar 

  12. Himanen, J.P. et al. Crystal structure of an Eph receptor–ephrin complex. Nature 414, 933–938 (2001).

    Article  CAS  Google Scholar 

  13. Smith, F.M. et al. Dissecting the EphA3/Ephrin-A5 interactions using a novel functional mutagenesis screen. J. Biol. Chem. 279, 9522–9531 (2004).

    Article  CAS  Google Scholar 

  14. Seiradake, E., Harlos, K., Sutton, G., Aricescu, A.R. & Jones, E.Y. An extracellular steric seeding mechanism for Eph–ephrin signaling platform assembly. Nat. Struct. Mol. Biol. 17, 398–402 (2010).

    Article  CAS  Google Scholar 

  15. Himanen, J.P. et al. Architecture of Eph receptor clusters. Proc. Natl. Acad. Sci. USA 107, 10860–10865 (2010).

    Article  CAS  Google Scholar 

  16. Egea, J. et al. Regulation of EphA 4 kinase activity is required for a subset of axon guidance decisions suggesting a key role for receptor clustering in Eph function. Neuron 47, 515–528 (2005).

    Article  CAS  Google Scholar 

  17. Dufour, A. et al. Area specificity and topography of thalamocortical projections are controlled by ephrin/Eph genes. Neuron 39, 453–465 (2003).

    Article  CAS  Google Scholar 

  18. Kullander, K. et al. Role of EphA4 and EphrinB3 in local neuronal circuits that control walking. Science 299, 1889–1892 (2003).

    Article  CAS  Google Scholar 

  19. Kao, T.J., Law, C. & Kania, A. Eph and ephrin signaling: lessons learned from spinal motor neurons. Semin. Cell Dev. Biol. 23, 83–91 (2012).

    Article  CAS  Google Scholar 

  20. Wang, L., Klein, R., Zheng, B. & Marquardt, T. Anatomical coupling of sensory and motor nerve trajectory via axon tracking. Neuron 71, 263–277 (2011).

    Article  CAS  Google Scholar 

  21. Brittis, P.A., Lu, Q. & Flanagan, J.G. Axonal protein synthesis provides a mechanism for localized regulation at an intermediate target. Cell 110, 223–235 (2002).

    Article  CAS  Google Scholar 

  22. Hafner, C. et al. Differential gene expression of Eph receptors and ephrins in benign human tissues and cancers. Clin. Chem. 50, 490–499 (2004).

    Article  CAS  Google Scholar 

  23. Cooper, M.A. et al. Loss of ephrin-A5 function disrupts lens fiber cell packing and leads to cataract. Proc. Natl. Acad. Sci. USA 105, 16620–16625 (2008).

    Article  CAS  Google Scholar 

  24. Qin, H. et al. Structural characterization of the EphA4–Ephrin-B2 complex reveals new features enabling Eph–ephrin binding promiscuity. J. Biol. Chem. 285, 644–654 (2010).

    Article  CAS  Google Scholar 

  25. Poliakov, A., Cotrina, M. & Wilkinson, D.G. Diverse roles of eph receptors and ephrins in the regulation of cell migration and tissue assembly. Dev. Cell 7, 465–480 (2004).

    Article  CAS  Google Scholar 

  26. Karplus, P.A. & Diederichs, K. Linking crystallographic model and data quality. Science 336, 1030–1033 (2012).

    Article  CAS  Google Scholar 

  27. Davis, I.W. et al. MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res. 35, W375–W383 (2007).

    Article  Google Scholar 

  28. Lemmer, P. et al. SPDM: light microscopy with single-molecule resolution at the nanoscale. Appl. Phys. B 93, 1–12 (2008).

    Article  CAS  Google Scholar 

  29. Heilemann, M. et al. Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes. Angew. Chem. Int. Edn Engl. 47, 6172–6176 (2008).

    Article  CAS  Google Scholar 

  30. Ripley, B.D. Modeling spatial patterns. J. Roy. Stat. Soc. B Met 39, 172–212 (1977).

    Google Scholar 

  31. Kaufmann, R., Mueller, P., Hildenbrand, G., Hausmann, M. & Cremer, C. Analysis of Her2/neu membrane protein clusters in different types of breast cancer cells using localization microscopy. J. Microsc. 242, 46–54 (2010).

    Article  Google Scholar 

  32. Wimmer-Kleikamp, S.H., Janes, P.W., Squire, A., Bastiaens, P.I. & Lackmann, M. Recruitment of Eph receptors into signaling clusters does not require ephrin contact. J. Cell Biol. 164, 661–666 (2004).

    Article  CAS  Google Scholar 

  33. Triplett, J.W. & Feldheim, D.A. Eph and ephrin signaling in the formation of topographic maps. Semin. Cell Dev. Biol. 23, 7–15 (2012).

    Article  CAS  Google Scholar 

  34. Astin, J.W. et al. Competition amongst Eph receptors regulates contact inhibition of locomotion and invasiveness in prostate cancer cells. Nat. Cell Biol. 12, 1194–1204 (2010).

    Article  CAS  Google Scholar 

  35. Salaita, K. et al. Restriction of receptor movement alters cellular response: physical force sensing by EphA2. Science 327, 1380–1385 (2010).

    Article  CAS  Google Scholar 

  36. Janes, P.W. et al. Eph receptor function is modulated by heterooligomerization of A and B type Eph receptors. J. Cell Biol. 195, 1033–1045 (2011).

    Article  CAS  Google Scholar 

  37. Freywald, A., Sharfe, N. & Roifman, C.M. The kinase-null EphB6 receptor undergoes transphosphorylation in a complex with EphB1. J. Biol. Chem. 277, 3823–3828 (2002).

    Article  CAS  Google Scholar 

  38. Miao, H. et al. EphA2 mediates ligand-dependent inhibition and ligand-independent promotion of cell migration and invasion via a reciprocal regulatory loop with Akt. Cancer Cell 16, 9–20 (2009).

    Article  CAS  Google Scholar 

  39. Aricescu, A.R., Lu, W. & Jones, E.Y. A time- and cost-efficient system for high-level protein production in mammalian cells. Acta Crystallogr. D Biol. Crystallogr. 62, 1243–1250 (2006).

    Article  Google Scholar 

  40. Reeves, P.J., Callewaert, N., Contreras, R. & Khorana, H.G. Structure and function in rhodopsin: high-level expression of rhodopsin with restricted and homogeneous N-glycosylation by a tetracycline-inducible N-acetylglucosaminyltransferase I-negative HEK293S stable mammalian cell line. Proc. Natl. Acad. Sci. USA 99, 13419–13424 (2002).

    Article  CAS  Google Scholar 

  41. Grueninger-Leitch, F., D'Arcy, A., D'Arcy, B. & Chene, C. Deglycosylation of proteins for crystallization using recombinant fusion protein glycosidases. Protein Sci. 5, 2617–2622 (1996).

    Article  CAS  Google Scholar 

  42. Walter, T.S. et al. Lysine methylation as a routine rescue strategy for protein crystallization. Structure 14, 1617–1622 (2006).

    Article  CAS  Google Scholar 

  43. Walter, T.S. et al. A procedure for setting up high-throughput nanolitre crystallization experiments: crystallization workflow for initial screening, automated storage, imaging and optimization. Acta Crystallogr. D Biol. Crystallogr. 61, 651–657 (2005).

    Article  Google Scholar 

  44. Winter, G. xia2: an expert system for macromolecular crystallography data reduction. J. Appl. Crystallogr. 43, 186–190 (2010).

    Article  CAS  Google Scholar 

  45. Kabsch, W. Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants. J. Appl. Crystallogr. 26, 795–800 (1993).

    Article  CAS  Google Scholar 

  46. Leslie, A.G. The integration of macromolecular diffraction data. Acta Crystallogr. D Biol. Crystallogr. 62, 48–57 (2006).

    Article  Google Scholar 

  47. Collaborative Computational Project 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50, 760–763 (1994).

  48. McCoy, A.J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    Article  CAS  Google Scholar 

  49. DiMaio, F., Tyka, M.D., Baker, M.L., Chiu, W. & Baker, D. Refinement of protein structures into low-resolution density maps using rosetta. J. Mol. Biol. 392, 181–190 (2009).

    Article  CAS  Google Scholar 

  50. Zwart, P.H. et al. Automated structure solution with the PHENIX suite. Methods Mol. Biol. 426, 419–435 (2008).

    Article  CAS  Google Scholar 

  51. Zhang, K.Y., Cowtan, K. & Main, P. Combining constraints for electron-density modification. Methods Enzymol. 277, 53–64 (1997).

    Article  CAS  Google Scholar 

  52. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  Google Scholar 

  53. Blanc, E. et al. Refinement of severely incomplete structures with maximum likelihood in BUSTER-TNT. Acta Crystallogr. D Biol. Crystallogr. 60, 2210–2221 (2004).

    Article  CAS  Google Scholar 

  54. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255 (1997).

    Article  CAS  Google Scholar 

  55. Xu, K. et al. Host cell recognition by the henipaviruses: crystal structures of the Nipah G attachment glycoprotein and its complex with ephrin-B3. Proc. Natl. Acad. Sci. USA 105, 9953–9958 (2008).

    Article  CAS  Google Scholar 

  56. Adams, P.D. et al. PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr. D Biol. Crystallogr. 58, 1948–1954 (2002).

    Article  Google Scholar 

  57. Gruell, F., Kirchgessner, M., Kaufmann, R., Hausmann, M. & Kebschull, U. Accelerating image analysis for localization microscopy with FPGAs. in International Conference on Field Programmable Logic and Applications 1–5 (Institute of Electrical and Electronics Engineers, 2011).

  58. Knöll, B., Weinl, C., Nordheim, A. & Bonhoeffer, F. Stripe assay to examine axonal guidance and cell migration. Nat. Protoc. 2, 1216–1224 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

We thank Y. Zhao and W. Lu for protein expression and M. Jones and T.S. Walter for technical support. We are grateful to T. Gaitanos for help with confocal microscopy data acquisition, I. Davis and I.M. Dobbie for discussion and assistance at the single-molecule–localization facility in the Micron Advanced Bioimaging Unit, J. Erl and M. Ponserre for assistance with cell-based assays, K.J. Morris for providing access to MetaMorph software and R.M. Esnouf for aiding in protein structure analysis. We thank the staff of the Diamond Light Source for assistance with diffraction data collection and K. Diederichs for help with data integration. This research was funded by a Cancer Research United Kingdom grant to E.Y.J. (grant A10979). Localization microscopy facilities in the Micron Advanced Bioimaging Unit were funded by the Wellcome Trust (grant 091911). E.S. was funded by an Intra-European Fellowship (Marie Curie); D.d.T.R. was funded by an European Molecular Biology Organization long-term fellowship; N.M. is supported by a Wellcome Trust D.Phil. studentship; and A.R.A. was supported as a United Kingdom Medical Research Council Career Development Award Fellow. Partial funding was provided by the Deutsche Forschungsgemeinschaft (SFB870) to R. Klein and Wellcome Trust grant 090532/Z/09/Z supporting the Wellcome Trust Centre for Human Genetics.

Author information

Authors and Affiliations

Authors

Contributions

E.S. performed protein crystallization, structure analysis, cell rounding assays and Eph clustering experiments. A.S. contributed to time-lapse imaging experiments. D.d.T.R. performed stripe assays. R. Kaufman conducted localization microscopy data acquisition and analysis. N.M. contributed to protein crystallization. K.H. performed Eph crystal mounting for data collection. A.R.A., R. Klein and E.Y.J. contributed to discussion at all stages of the project. All authors contributed to writing of the manuscript.

Corresponding authors

Correspondence to Rüdiger Klein or E Yvonne Jones.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–11 and Supplementary Note (PDF 3739 kb)

Supplementary Movie 1

Phase-contrast images showing the response of an EphA2-mVenus transfected cell upon pre-clustered ephrinA5-Fc stimulation. Images were taken before and every 6 minutes after stimulation. (MOV 108 kb)

Supplementary Movie 2

Phase-contrast images showing the response of an EphA4-mVenus transfected cell upon pre-clustered ephrinA5-Fc stimulation. Images were taken before and every 6 minutes after stimulation. (MOV 157 kb)

Supplementary Movie 3

Confocal images of live COS7 cell time lapse experiments show mVenus-tagged EphA2 clustering upon ephrinA5-Fc stimulation. (MOV 275 kb)

Supplementary Movie 4

Confocal images of live COS7 cell time lapse experiments show mVenus-tagged EphA4 clustering upon ephrinA5-Fc stimulation. (MOV 908 kb)

Supplementary Movie 5

Confocal images of live COS7 cell time lapse experiments show mVenus-tagged chimeric Eph receptor A4A2 clustering upon ephrinA5-Fc stimulation. A4A2 contains an EphA4 ectodomain fused to EphA2 transmembrane and intracellular domains. (MOV 247 kb)

Supplementary Movie 6

Confocal images of live COS7 cell time lapse experiments show mVenus-tagged chimeric Eph receptor A2A4 clustering upon ephrinA5-Fc stimulation. A2A4 contains an EphA2 ectodomain fused to EphA4 transmembrane and intracellular domains. (MOV 434 kb)

Supplementary Movie 7

Confocal images of live COS7 cell time lapse experiments show the mVenus-tagged EphA2 sushi dimerization surface mutant (EphA2su) clustering upon ephrinA5-Fc stimulation. (MOV 284 kb)

Supplementary Movie 8

Confocal images of live COS7 cell time lapse experiments show the mVenus-tagged EphA2 sushi dimerization surface mutant (EphA2su) clustering upon ephrinA5-Fc stimulation. (MOV 401 kb)

Supplementary Movie 9

mCherry-tagged EphA2 was co-expressed in COS7 cells with the non-ephrin-binding mVenus-tagged mutant EphA2nb. Confocal images of time lapse experiments show mVenus-tagged EphA2nb co-clustering with mCherry-tagged EphA2 upon ephrinA5-Fc stimulation. (MOV 330 kb)

Supplementary Movie 10

mCherry-tagged EphA2 was co-expressed in COS7 cells with the mVenus-tagged non-ephrin-binding and sushi dimerization surface mutant EphA2nb–su. Confocal images of time lapse experiments show mVenus-tagged EphA2nb–su does not co-cluster with mCherry-tagged EphA2 upon ephrinA5-Fc stimulation. (MOV 352 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seiradake, E., Schaupp, A., del Toro Ruiz, D. et al. Structurally encoded intraclass differences in EphA clusters drive distinct cell responses. Nat Struct Mol Biol 20, 958–964 (2013). https://doi.org/10.1038/nsmb.2617

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2617

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing