Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Structure and function of Hip, an attenuator of the Hsp70 chaperone cycle

Abstract

The Hsp70-interacting protein, Hip, cooperates with the chaperone Hsp70 in protein folding and prevention of aggregation. Hsp70 interacts with non-native protein substrates in an ATP-dependent reaction cycle regulated by J-domain proteins and nucleotide exchange factors (NEFs). Hip is thought to delay substrate release by slowing ADP dissociation from Hsp70. Here we present crystal structures of the dimerization domain and the tetratricopeptide repeat (TPR) domain of rat Hip. As shown in a cocrystal structure, the TPR core of Hip interacts with the Hsp70 ATPase domain through an extensive interface, to form a bracket that locks ADP in the binding cleft. Hip and NEF binding to Hsp70 are mutually exclusive, and thus Hip attenuates active cycling of Hsp70–substrate complexes. This mechanism explains how Hip enhances aggregation prevention by Hsp70 and facilitates transfer of specific proteins to downstream chaperones or the proteasome.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Interaction of Hip and Hsp70.
Figure 2: Structures of Hip domains.
Figure 3: The core complex of Hip and Hsp70.
Figure 4: Interplay of Hip and Hsp70 NEFs.
Figure 5: Mutational analysis of Hip function in vivo.
Figure 6: Model of the role of Hip in protein quality control.

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Hartl, F.U., Bracher, A. & Hayer-Hartl, M. Molecular chaperones in protein folding and proteostasis. Nature 475, 324–332 (2011).

    CAS  Article  Google Scholar 

  2. Zhu, X. et al. Structural analysis of substrate binding by the molecular chaperone DnaK. Science 272, 1606–1614 (1996).

    CAS  Article  Google Scholar 

  3. Mayer, M.P. Gymnastics of molecular chaperones. Mol. Cell 39, 321–331 (2010).

    CAS  Article  Google Scholar 

  4. Zhuravleva, A., Clerico, E.M. & Gierasch, L.M. An interdomain energetic tug-of-war creates the allosterically active state in Hsp70 molecular chaperones. Cell 151, 1296–1307 (2012).

    CAS  Article  Google Scholar 

  5. Kityk, R., Kopp, J., Sinning, I. & Mayer, M.P. Structure and dynamics of the ATP-bound open conformation of Hsp70 chaperones. Mol. Cell 48, 863–874 (2012).

    CAS  Article  Google Scholar 

  6. Liu, Q. & Hendrickson, W.A. Insights into Hsp70 chaperone activity from a crystal structure of the yeast Hsp110 Sse1. Cell 131, 106–120 (2007).

    CAS  Article  Google Scholar 

  7. Bertelsen, E.B., Chang, L., Gestwicki, J.E. & Zuiderweg, E.R. Solution conformation of wild-type E. coli Hsp70 (DnaK) chaperone complexed with ADP and substrate. Proc. Natl. Acad. Sci. USA 106, 8471–8476 (2009).

    CAS  Article  Google Scholar 

  8. Höhfeld, J. & Jentsch, S. GrpE-like regulation of the hsc70 chaperone by the anti-apoptotic protein BAG-1. EMBO J. 16, 6209–6216 (1997).

    Article  Google Scholar 

  9. Kabani, M., McLellan, C., Raynes, D.A., Guerriero, V. & Brodsky, J.L. HspBP1, a homologue of the yeast Fes1 and Sls1 proteins, is an Hsc70 nucleotide exchange factor. FEBS Lett. 531, 339–342 (2002).

    CAS  Article  Google Scholar 

  10. Dragovic, Z., Broadley, S.A., Shomura, Y., Bracher, A. & Hartl, F.U. Molecular chaperones of the Hsp110 family act as nucleotide exchange factors of Hsp70s. EMBO J. 25, 2519–2528 (2006).

    CAS  Article  Google Scholar 

  11. Raviol, H., Sadlish, H., Rodriguez, F., Mayer, M.P. & Bukau, B. Chaperone network in the yeast cytosol: Hsp110 is revealed as an Hsp70 nucleotide exchange factor. EMBO J. 25, 2510–2518 (2006).

    CAS  Article  Google Scholar 

  12. Höhfeld, J., Minami, Y. & Hartl, F.U. Hip, a novel cochaperone involved in the eukaryotic Hsc70/Hsp40 reaction cycle. Cell 83, 589–598 (1995).

    Article  Google Scholar 

  13. Velten, M., Villoutreix, B.O. & Ladjimi, M.M. Quaternary structure of the HSC70 cochaperone HIP. Biochemistry 39, 307–315 (2000).

    CAS  Article  Google Scholar 

  14. Prapapanich, V., Chen, S., Nair, S.C., Rimerman, R.A. & Smith, D.F. Molecular cloning of human p48, a transient component of progesterone receptor complexes and an Hsp70-binding protein. Mol. Endocrinol. 10, 420–431 (1996).

    CAS  PubMed  Google Scholar 

  15. Irmer, H. & Höhfeld, J. Characterization of functional domains of the eukaryotic co-chaperone Hip. J. Biol. Chem. 272, 2230–2235 (1997).

    CAS  Article  Google Scholar 

  16. Prapapanich, V., Chen, S., Toran, E.J., Rimerman, R.A. & Smith, D.F. Mutational analysis of the hsp70-interacting protein Hip. Mol. Cell. Biol. 16, 6200–6207 (1996).

    CAS  Article  Google Scholar 

  17. Velten, M., Gomez-Vrielynck, N., Chaffotte, A. & Ladjimi, M.M. Domain structure of the HSC70 cochaperone, HIP. J. Biol. Chem. 277, 259–266 (2002).

    CAS  Article  Google Scholar 

  18. Nelson, G.M., Huffman, H. & Smith, D.F. Comparison of the carboxy-terminal DP-repeat region in the co-chaperones Hop and Hip. Cell Stress Chaperones 8, 125–133 (2003).

    CAS  Article  Google Scholar 

  19. Schmid, A.B. et al. The architecture of functional modules in the Hsp90 co-chaperone Sti1/Hop. EMBO J. 31, 1506–1517 (2012).

    CAS  Article  Google Scholar 

  20. Howarth, J.L., Glover, C.P. & Uney, J.B. HSP70 interacting protein prevents the accumulation of inclusions in polyglutamine disease. J. Neurochem. 108, 945–951 (2009).

    CAS  Article  Google Scholar 

  21. Roodveldt, C. et al. Chaperone proteostasis in Parkinson's disease: stabilization of the Hsp70/α-synuclein complex by Hip. EMBO J. 28, 3758–3770 (2009).

    CAS  Article  Google Scholar 

  22. Wang, A.M. et al. Activation of Hsp70 reduces neurotoxicity by promoting polyglutamine protein degradation. Nat. Chem. Biol. 9, 112–118 (2013).

    CAS  Article  Google Scholar 

  23. Rousaki, A. et al. Allosteric drugs: the interaction of antitumor compound MKT-077 with human Hsp70 chaperones. J. Mol. Biol. 411, 614–632 (2011).

    CAS  Article  Google Scholar 

  24. Barthel, T.K., Zhang, J. & Walker, G.C. ATPase-defective derivatives of Escherichia coli DnaK that behave differently with respect to ATP-induced conformational change and peptide release. J. Bacteriol. 183, 5482–5490 (2001).

    CAS  Article  Google Scholar 

  25. Dores-Silva, P.R. et al. Low resolution structural characterization of the Hsp70-interacting protein—Hip—from Leishmania braziliensis emphasizes its high asymmetry. Arch. Biochem. Biophys. 520, 88–98 (2012).

    CAS  Article  Google Scholar 

  26. Wilbanks, S.M. & McKay, D.B. How potassium affects the activity of the molecular chaperone Hsc70: II. potassium binds specifically in the ATPase active site. J. Biol. Chem. 270, 2251–2257 (1995).

    CAS  Article  Google Scholar 

  27. Liu, Y., Gierasch, L.M. & Bahar, I. Role of Hsp70 ATPase domain intrinsic dynamics and sequence evolution in enabling its functional interactions with NEFs. PLOS Comput. Biol. 6, e1000931 (2010).

    Article  Google Scholar 

  28. D'Andrea, L.D. & Regan, L. TPR proteins: the versatile helix. Trends Biochem. Sci. 28, 655–662 (2003).

    CAS  Article  Google Scholar 

  29. Place, S.P. Single-point mutation in a conserved TPR domain of Hip disrupts enhancement of glucocorticoid receptor signaling. Cell Stress Chaperones 16, 469–474 (2011).

    CAS  Article  Google Scholar 

  30. Olsen, J.V. et al. Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Sci. Signal. 3, ra3 (2010).

    Article  Google Scholar 

  31. Nelson, G.M. et al. The heat shock protein 70 cochaperone hip enhances functional maturation of glucocorticoid receptor. Mol. Endocrinol. 18, 1620–1630 (2004).

    CAS  Article  Google Scholar 

  32. Arakawa, A. et al. The C-terminal BAG domain of BAG5 induces conformational changes of the Hsp70 nucleotide-binding domain for ADP-ATP exchange. Structure 18, 309–319 (2010).

    CAS  Article  Google Scholar 

  33. Polier, S., Dragovic, Z., Hartl, F.U. & Bracher, A. Structural basis for the cooperation of Hsp70 and Hsp110 chaperones in protein folding. Cell 133, 1068–1079 (2008).

    CAS  Article  Google Scholar 

  34. Schuermann, J.P. et al. Structure of the Hsp110:Hsc70 nucleotide exchange machine. Mol. Cell 31, 232–243 (2008).

    CAS  Article  Google Scholar 

  35. Shomura, Y. et al. Regulation of Hsp70 function by HspBP1: structural analysis reveals an alternate mechanism for Hsp70 nucleotide exchange. Mol. Cell 17, 367–379 (2005).

    CAS  PubMed  Google Scholar 

  36. Sondermann, H. et al. Structure of a Bag/Hsc70 complex: convergent functional evolution of Hsp70 nucleotide exchange factors. Science 291, 1553–1557 (2001).

    CAS  Article  Google Scholar 

  37. Xu, Z. et al. Structural basis of nucleotide exchange and client binding by the Hsp70 cochaperone Bag2. Nat. Struct. Mol. Biol. 15, 1309–1317 (2008).

    CAS  Article  Google Scholar 

  38. Scheufler, C. et al. Structure of TPR domain-peptide complexes: critical elements in the assembly of the Hsp70-Hsp90 multichaperone machine. Cell 101, 199–210 (2000).

    CAS  Article  Google Scholar 

  39. Zhang, M. et al. Chaperoned ubiquitylation–crystal structures of the CHIP U box E3 ubiquitin ligase and a CHIP-Ubc13-Uev1a complex. Mol. Cell 20, 525–538 (2005).

    CAS  Article  Google Scholar 

  40. Barker, B.L. & Benovic, J.L. G protein–coupled receptor kinase 5 phosphorylation of hip regulates internalization of the chemokine receptor CXCR4. Biochemistry 50, 6933–6941 (2011).

    CAS  Article  Google Scholar 

  41. Olsen, J.V. et al. Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell 127, 635–648 (2006).

    CAS  Article  Google Scholar 

  42. Zhou, X. et al. Potent and specific antitumor effect for colorectal cancer by CEA and Rb double regulated oncolytic adenovirus harboring ST13 gene. PLoS ONE 7, e47566 (2012).

    CAS  Article  Google Scholar 

  43. Riggs, D.L. et al. The Hsp90-binding peptidylprolyl isomerase FKBP52 potentiates glucocorticoid signaling in vivo. EMBO J. 22, 1158–1167 (2003).

    CAS  Article  Google Scholar 

  44. Weiner, M.P. et al. Site-directed mutagenesis of double-stranded DNA by the polymerase chain reaction. Gene 151, 119–123 (1994).

    CAS  Article  Google Scholar 

  45. Becker, T., Hartl, F.U. & Wieland, F. CD40, an extracellular receptor for binding and uptake of Hsp70-peptide complexes. J. Cell Biol. 158, 1277–1285 (2002).

    CAS  Article  Google Scholar 

  46. Kabsch, W. XDS. Acta Crystallogr. D Biol. Crystallogr. 66, 125–132 (2010).

    CAS  Article  Google Scholar 

  47. Evans, P. Scaling and assessment of data quality. Acta Crystallogr. D Biol. Crystallogr. 62, 72–82 (2006).

    Article  Google Scholar 

  48. Evans, P.R. Scala. Joint CCP4 ESF-EACBM Newsl 33, 22–24 (1997).

    Google Scholar 

  49. Collaborative Computational Project. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50, 760–763 (1994).

  50. Sheldrick, G.M. Experimental phasing with SHELXC/D/E: combining chain tracing with density modification. Acta Crystallogr. D Biol. Crystallogr. 66, 479–485 (2010).

    CAS  Article  Google Scholar 

  51. Pape, T. & Schneider, T.R. HKL2MAP: a graphical user interface for phasing with SHELX programs. J. Appl. Crystallogr. 37, 843–844 (2004).

    CAS  Article  Google Scholar 

  52. Vonrhein, C., Blanc, E., Roversi, P. & Bricogne, G. Automated structure solution with autoSHARP. Methods Mol. Biol. 364, 215–230 (2007).

    CAS  Google Scholar 

  53. Terwilliger, T.C. Maximum-likelihood density modification. Acta Crystallogr. D Biol. Crystallogr. 56, 965–972 (2000).

    CAS  Article  Google Scholar 

  54. Vagin, A.A. & Isupov, M.N. Spherically averaged phased translation function and its application to the search for molecules and fragments in electron-density maps. Acta Crystallogr. D Biol. Crystallogr. 57, 1451–1456 (2001).

    CAS  Article  Google Scholar 

  55. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  Google Scholar 

  56. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255 (1997).

    CAS  Article  Google Scholar 

  57. Gässler, C.S., Wiederkehr, T., Brehmer, D., Bukau, B. & Mayer, M.P. Bag-1M accelerates nucleotide release for human Hsc70 and Hsp70 and can act concentration-dependent as positive and negative cofactor. J. Biol. Chem. 276, 32538–32544 (2001).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank M.B. Cox (University of Texas, El Paso, Texas, USA) for providing the S. cerevisiae DSY-1100 strain, and the MPIB core and crystallization facilities for assistance with CD spectrometry and crystallization screening. Crystal diffraction and SAXS experiments were performed at the European Synchrotron Radiation Facility (ESRF), Grenoble, France. We are grateful to D. Makino for collecting diffraction data and to C. Basquin for help with SAXS data analysis. Support by the Joint Structural Biology Group staff at ESRF Grenoble is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

All authors participated in designing the study and in data analysis. Experiments were performed by Z.L. and A.B., and A.B. and F.U.H. wrote the manuscript.

Corresponding authors

Correspondence to F Ulrich Hartl or Andreas Bracher.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 and Supplementary Note (PDF 4947 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Li, Z., Hartl, F. & Bracher, A. Structure and function of Hip, an attenuator of the Hsp70 chaperone cycle. Nat Struct Mol Biol 20, 929–935 (2013). https://doi.org/10.1038/nsmb.2608

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2608

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing