Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Molecular dissection of human Argonaute proteins by DNA shuffling

Abstract

A paramount task in RNA interference research is to decipher the complex biology of cellular effectors, exemplified in humans by four pleiotropic Argonaute proteins (Ago1–Ago4). Here, we exploited DNA family shuffling, a molecular evolution technology, to generate chimeric Ago protein libraries for dissection of intricate phenotypes independently of prior structural knowledge. Through shuffling of human Ago2 and Ago3, we discovered two N-terminal motifs that govern RNA cleavage in concert with the PIWI domain. Structural modeling predicts an impact on protein rigidity and/or RNA-PIWI alignment, suggesting new mechanistic explanations for Ago3's slicing deficiency. Characterization of hybrids including Ago1 and Ago4 solidifies that slicing requires the juxtaposition and combined action of multiple disseminated modules. We also present a Gateway library of codon-optimized chimeras of human Ago1–Ago4 and molecular evolution analysis software as resources for future investigations into RNA interference sequence-structure-function relationships.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Use of DFS to discover Ago motifs critical for slicing.
Figure 2: Cooperative action of motifs I and II for RNA-duplex activation and target cleavage.
Figure 3: Homology models of complete human Ago2 and Ago3 structures.
Figure 4: Characterization of chimeric Ago1–Ago4 mutants.
Figure 5: DNA family shuffling of Ago1–Ago4.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Mukherjee, K., Campos, H. & Kolaczkowski, B. Evolution of animal and plant dicers: early parallel duplications and recurrent adaptation of antiviral RNA binding in plants. Mol. Biol. Evol. 30, 627–641 (2013).

    Article  CAS  PubMed  Google Scholar 

  2. Höck, J. & Meister, G. The Argonaute protein family. Genome Biol. 9, 210 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Hutvagner, G. & Simard, M.J. Argonaute proteins: key players in RNA silencing. Nat. Rev. Mol. Cell Biol. 9, 22–32 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Su, H., Trombly, M.I., Chen, J. & Wang, X. Essential and overlapping functions for mammalian Argonautes in microRNA silencing. Genes Dev. 23, 304–317 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ender, C. & Meister, G. Argonaute proteins at a glance. J. Cell Sci. 123, 1819–1823 (2010).

    Article  CAS  PubMed  Google Scholar 

  6. Haussecker, D. et al. Human tRNA-derived small RNAs in the global regulation of RNA silencing. RNA 16, 673–695 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ahlenstiel, C.L. et al. Direct evidence of nuclear Argonaute distribution during transcriptional silencing links the actin cytoskeleton to nuclear RNAi machinery in human cells. Nucleic Acids Res. 40, 1579–1595 (2012).

    Article  CAS  PubMed  Google Scholar 

  8. Parisi, C. et al. Ago1 and Ago2 differentially affect cell proliferation, motility and apoptosis when overexpressed in SH-SY5Y neuroblastoma cells. FEBS Lett. 585, 2965–2971 (2011).

    Article  CAS  PubMed  Google Scholar 

  9. Van Stry, M. et al. Enhanced susceptibility of Ago1/3 double-null mice to influenza A virus infection. J. Virol. 86, 4151–4157 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Randall, G. et al. Cellular cofactors affecting hepatitis C virus infection and replication. Proc. Natl. Acad. Sci. USA 104, 12884–12889 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mockenhaupt, S., Schurmann, N. & Grimm, D. When cellular networks run out of control: global dysregulation of the RNAi machinery in human pathology and therapy. Prog. Mol. Biol. Transl. Sci. 102, 165–242 (2011).

    Article  CAS  PubMed  Google Scholar 

  12. Khan, A.A. et al. Transfection of small RNAs globally perturbs gene regulation by endogenous microRNAs. Nat. Biotechnol. 27, 549–555 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Grimm, D. et al. Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature 441, 537–541 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Beer, S. et al. Low-level shRNA cytotoxicity can contribute to MYC-induced hepatocellular carcinoma in adult mice. Mol. Ther. 18, 161–170 (2010).

    Article  CAS  PubMed  Google Scholar 

  15. Grimm, D. The dose can make the poison: lessons learned from adverse in vivo toxicities caused by RNAi overexpression. Silence 2, 8 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Martin, J.N. et al. Lethal toxicity caused by expression of shRNA in the mouse striatum: implications for therapeutic design. Gene Ther. 18, 666–673 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ehlert, E.M., Eggers, R., Niclou, S.P. & Verhaagen, J. Cellular toxicity following application of adeno-associated viral vector-mediated RNA interference in the nervous system. BMC Neurosci. 11, 20 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Bish, L.T. et al. Cardiac gene transfer of short hairpin RNA directed against phospholamban effectively knocks down gene expression but causes cellular toxicity in canines. Hum. Gene Ther. 22, 969–977 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Grimm, D. et al. Argonaute proteins are key determinants of RNAi efficacy, toxicity, and persistence in the adult mouse liver. J. Clin. Invest. 120, 3106–3119 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Diederichs, S. et al. Coexpression of Argonaute-2 enhances RNA interference toward perfect match binding sites. Proc. Natl. Acad. Sci. USA 105, 9284–9289 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Juvvuna, P.K., Khandelia, P., Lee, L.M. & Makeyev, E.V. Argonaute identity defines the length of mature mammalian microRNAs. Nucleic Acids Res. 40, 6808–6820 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ma, J.B. et al. Structural basis for 5′-end-specific recognition of guide RNA by the A. fulgidus Piwi protein. Nature 434, 666–670 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Till, S. et al. A conserved motif in Argonaute-interacting proteins mediates functional interactions through the Argonaute PIWI domain. Nat. Struct. Mol. Biol. 14, 897–903 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Elkayam, E. et al. The structure of human Argonaute-2 in complex with miR-20a. Cell 150, 100–110 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Schirle, N.T. & MacRae, I.J. The crystal structure of human Argonaute2. Science 336, 1037–1040 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Frank, F. et al. Structural analysis of 5′-mRNA-cap interactions with the human AGO2 MID domain. EMBO Rep. 12, 415–420 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Frank, F., Sonenberg, N. & Nagar, B. Structural basis for 5′-nucleotide base-specific recognition of guide RNA by human AGO2. Nature 465, 818–822 (2010).

    Article  CAS  PubMed  Google Scholar 

  28. Liu, J. et al. Argonaute2 is the catalytic engine of mammalian RNAi. Science 305, 1437–1441 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Diederichs, S. & Haber, D.A. Dual role for argonautes in microRNA processing and posttranscriptional regulation of microRNA expression. Cell 131, 1097–1108 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Cheloufi, S., Dos Santos, C.O., Chong, M.M. & Hannon, G.J. A dicer-independent miRNA biogenesis pathway that requires Ago catalysis. Nature 465, 584–589 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cifuentes, D. et al. A novel miRNA processing pathway independent of Dicer requires Argonaute2 catalytic activity. Science 328, 1694–1698 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yang, J.S. et al. Conserved vertebrate mir-451 provides a platform for Dicer-independent, Ago2-mediated microRNA biogenesis. Proc. Natl. Acad. Sci. USA 107, 15163–15168 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mallory, A.C. et al. Redundant and specific roles of the ARGONAUTE proteins AGO1 and ZLL in development and small RNA-directed gene silencing. PLoS Genet. 5, e1000646 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Zha, X., Xia, Q. & Yuan, Y.A. Structural insights into small RNA sorting and mRNA target binding by Arabidopsis Argonaute Mid domains. FEBS Lett. 586, 3200–3207 (2012).

    Article  CAS  PubMed  Google Scholar 

  35. Wang, B. et al. Distinct passenger strand and mRNA cleavage activities of human Argonaute proteins. Nat. Struct. Mol. Biol. 16, 1259–1266 (2009).

    Article  CAS  PubMed  Google Scholar 

  36. Yuan, Y.R. et al. Crystal structure of A. aeolicus argonaute, a site-specific DNA-guided endoribonuclease, provides insights into RISC-mediated mRNA cleavage. Mol. Cell 19, 405–419 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Crameri, A., Raillard, S.A., Bermudez, E. & Stemmer, W.P. DNA shuffling of a family of genes from diverse species accelerates directed evolution. Nature 391, 288–291 (1998).

    Article  CAS  PubMed  Google Scholar 

  38. Grimm, D. et al. In vitro and in vivo gene therapy vector evolution via multispecies interbreeding and retargeting of adeno-associated viruses. J. Virol. 82, 5887–5911 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hartley, J.L., Temple, G.F. & Brasch, M.A. DNA cloning using in vitro site-specific recombination. Genome Res. 10, 1788–1795 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Valdmanis, P.N. et al. Expression determinants of mammalian argonaute proteins in mediating gene silencing. Nucleic Acids Res. 40, 3704–3713 (2012).

    Article  CAS  PubMed  Google Scholar 

  41. Joern, J.M., Meinhold, P. & Arnold, F.H. Analysis of shuffled gene libraries. J. Mol. Biol. 316, 643–656 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Gu, S. et al. Thermodynamic stability of small hairpin RNAs highly influences the loading process of different mammalian Argonautes. Proc. Natl. Acad. Sci. USA 108, 9208–9213 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Petri, S. et al. Increased siRNA duplex stability correlates with reduced off-target and elevated on-target effects. RNA 17, 737–749 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Winter, J. & Diederichs, S. Argonaute proteins regulate microRNA stability: increased microRNA abundance by Argonaute proteins is due to microRNA stabilization. RNA Biol. 8, 1149–1157 (2011).

    Article  CAS  PubMed  Google Scholar 

  45. Wang, Y. et al. Nucleation, propagation and cleavage of target RNAs in Ago silencing complexes. Nature 461, 754–761 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kwak, P.B. & Tomari, Y. The N domain of Argonaute drives duplex unwinding during RISC assembly. Nat. Struct. Mol. Biol. 19, 145–151 (2012).

    Article  CAS  PubMed  Google Scholar 

  47. Nakanishi, K., Weinberg, D.E., Bartel, D.P. & Patel, D.J. Structure of yeast Argonaute with guide RNA. Nature 486, 368–374 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Janas, M.M. et al. Alternative RISC assembly: binding and repression of microRNA-mRNA duplexes by human Ago proteins. RNA 18, 2041–2055 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Djuranovic, S. et al. Allosteric regulation of Argonaute proteins by miRNAs. Nat. Struct. Mol. Biol. 17, 144–150 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hur, J.K., Zinchenko, M.K., Djuranovic, S. & Green, R. Regulation of Argonaute Slicer activity by guide RNA 3′ end interactions with the N-terminal lobe. J. Biol. Chem. 288, 7829–7840 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Pillai, R.S., Artus, C.G. & Filipowicz, W. Tethering of human Ago proteins to mRNA mimics the miRNA-mediated repression of protein synthesis. RNA 10, 1518–1525 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Schmitter, D. et al. Effects of Dicer and Argonaute down-regulation on mRNA levels in human HEK293 cells. Nucleic Acids Res. 34, 4801–4815 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Stoehr, J. & Meister, G. In vitro RISC cleavage assay. Methods Mol. Biol. 725, 77–90 (2011).

    Article  CAS  PubMed  Google Scholar 

  54. Thompson, J.D., Higgins, D.G. & Gibson, T.J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Roberts, E., Eargle, J., Wright, D. & Luthey-Schulten, Z. MultiSeq: unifying sequence and structure data for evolutionary analysis. BMC Bioinformatics 7, 382 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Leaver-Fay, A. et al. ROSETTA3: an object-oriented software suite for the simulation and design of macromolecules. Methods Enzymol. 487, 545–574 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kim, D.E., Chivian, D. & Baker, D. Protein structure prediction and analysis using the Robetta server. Nucleic Acids Res. 32, W526–W531 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph. 14, 33–38, 27–28 (1996).

    Article  CAS  PubMed  Google Scholar 

  59. Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. Roy. Statist. Soc. Ser. B 57, 289–300 (1995).

    Google Scholar 

Download references

Acknowledgements

The authors greatly appreciate funding of their group and work by the Heidelberg University Cluster of Excellence CellNetworks (grant number EXC 81) as well as by the Chica and Heinz Schaller Foundation. L.G.T. was supported by an European Molecular Biology Organization fellowship (EMBO ALTF 676-2010). We moreover thank H.-G. Kräusslich, R. Bartenschlager, G. Stöcklin and all lab members for helpful discussions and suggestions. In addition, we are indebted to S. Ruedel (University of Regensburg, Regensburg, Germany) for kindly providing her protocol for slicer assays as well as to W. Filipowicz (Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland) for his much appreciated gifts of Ago2-knockdown cells and of various plasmids for the tethering assays. Finally, we are grateful to E. Wiedtke for technical support as well as to S. Grosse for her extensive critical testing of our Salanto software and for providing sundry useful ideas for improvements.

Author information

Authors and Affiliations

Authors

Contributions

N.S. and D.G. designed the experiments in this work and wrote the manuscript. N.S. conducted all experiments. L.G.T. and R.B.R. contributed the Ago2 and Ago3 Rosetta models and assisted in their interpretation. C.B. performed the bioinformatical analyses of the DFS reactions and products, using the Salanto software tool that he, together with N.S., developed for this work.

Corresponding author

Correspondence to Dirk Grimm.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 and Supplementary Tables 1–4 (PDF 7067 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schürmann, N., Trabuco, L., Bender, C. et al. Molecular dissection of human Argonaute proteins by DNA shuffling. Nat Struct Mol Biol 20, 818–826 (2013). https://doi.org/10.1038/nsmb.2607

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2607

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing