Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The glucocorticoid receptor dimer interface allosterically transmits sequence-specific DNA signals

Abstract

Glucocorticoid receptor (GR) binds to genomic response elements and regulates gene transcription with cell and gene specificity. Within a response element, the precise sequence to which the receptor binds has been implicated in directing its structure and activity. Here, we use NMR chemical-shift difference mapping to show that nonspecific interactions with bases at particular positions in the binding sequence, such as those of the 'spacer', affect the conformation of distinct regions of the rat GR DNA-binding domain. These regions include the DNA-binding surface, the 'lever arm' and the dimerization interface, suggesting an allosteric pathway that signals between the DNA-binding sequence and the associated dimer partner. Disrupting this pathway by mutating the dimer interface alters sequence-specific conformations, DNA-binding kinetics and transcriptional activity. Our study demonstrates that GR dimer partners collaborate to read DNA shape and to direct sequence-specific gene activity.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Nonspecific GBS bases modulate GR structure and activity.
Figure 2: GBS spacer affects the conformation of the D-loop.
Figure 3: Disruption of the dimerization interface affects lever arm and DNA-recognition helix conformation.
Figure 4: A477T impairs dimerization but not monomer DNA binding.
Figure 5: A477T disrupts cooperativity and GBS-specific dissociation.
Figure 6: Sequence-specific lever-arm conformation is dependent on the intact dimerization interface.

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Yamamoto, K.R., Darimont, B., Wagner, R. & Iniguez-Lluhi, J. Building transcriptional regulatory complexes: signals and surfaces. Cold Spring Harb. Symp. Quant. Biol. 63, 587–598 (1998).

    Article  CAS  Google Scholar 

  2. Rosenfeld, M.G., Lunyak, V.V. & Glass, C.K. Sensors and signals: a coactivator/corepressor/epigenetic code for integrating signal-dependent programs of transcriptional response. Genes Dev. 20, 1405–1428 (2006).

    Article  CAS  Google Scholar 

  3. Ricketson, D., Hostick, U., Fang, L., Yamamoto, K. & Darimont, B. A conformational switch in the ligand-binding domain regulates the dependence of the glucocorticoid receptor on Hsp90. J. Mol. Biol. 368, 729–741 (2007).

    Article  CAS  Google Scholar 

  4. Garza, A.M.S., Khan, S.H. & Kumar, R. Site-specific phosphorylation induces functionally active conformation in the intrinsically disordered N-terminal activation function (AF1) domain of the glucocorticoid receptor. Mol. Cell Biol. 30, 220–230 (2010).

    Article  CAS  Google Scholar 

  5. Bledsoe, R.K. et al. Crystal structure of the glucocorticoid receptor ligand binding domain reveals a novel mode of receptor dimerization and coactivator recognition. Cell 110, 93–105 (2002).

    Article  CAS  Google Scholar 

  6. Frego, L. Conformational changes of the glucocorticoid receptor ligand binding domain induced by ligand and cofactor binding, and the location of cofactor binding sites determined by hydrogen/deuterium exchange mass spectrometry. Protein Sci. 15, 722–730 (2006).

    Article  CAS  Google Scholar 

  7. Schoch, G.A. et al. Molecular switch in the glucocorticoid receptor: active and passive antagonist conformations. J. Mol. Biol. 395, 568–577 (2010).

    Article  CAS  Google Scholar 

  8. Kauppi, B. et al. The three-dimensional structures of antagonistic and agonistic forms of the glucocorticoid receptor ligand-binding domain: RU-486 induces a transconformation that leads to active antagonism. J. Biol. Chem. 278, 22748–22754 (2003).

    Article  CAS  Google Scholar 

  9. Shah, N. & Scanlan, T.S. Design and evaluation of novel nonsteroidal dissociating glucocorticoid receptor ligands. Bioorg. Med. Chem. Lett. 14, 5199–5203 (2004).

    Article  CAS  Google Scholar 

  10. Diamond, M.I., Miner, J.N., Yoshinaga, S.K. & Yamamoto, K.R. Transcription factor interactions: selectors of positive or negative regulation from a single DNA element. Science 249, 1266–1272 (1990).

    Article  CAS  Google Scholar 

  11. Rogatsky, I., Waase, C.L. & Garabedian, M.J. Phosphorylation and inhibition of rat glucocorticoid receptor transcriptional activation by glycogen synthase kinase-3 (GSK-3). Species-specific differences between human and rat glucocorticoid receptor signaling as revealed through GSK-3 phosphorylation. J. Biol. Chem. 273, 14315–14321 (1998).

    Article  CAS  Google Scholar 

  12. So, A.Y.-L., Chaivorapol, C., Bolton, E.C., Li, H. & Yamamoto, K.R. Determinants of cell- and gene-specific transcriptional regulation by the glucocorticoid receptor. PLoS Genet. 3, e94 (2007).

    Article  Google Scholar 

  13. La Baer, J. & Yamamoto, K.R. Analysis of the DNA-binding affinity, sequence specificity and context dependence of the glucocorticoid receptor zinc finger region. J. Mol. Biol. 239, 664–688 (1994).

    Article  CAS  Google Scholar 

  14. Baumann, H. et al. Refined solution structure of the glucocorticoid receptor DNA-binding domain. Biochemistry 32, 13463–13471 (1993).

    Article  CAS  Google Scholar 

  15. Härd, T. et al. Solution structure of the glucocorticoid receptor DNA-binding domain. Science 249, 157–160 (1990).

    Article  Google Scholar 

  16. Luisi, B.F. et al. Crystallographic analysis of the interaction of the glucocorticoid receptor with DNA. Nature 352, 497–505 (1991).

    Article  CAS  Google Scholar 

  17. Meijsing, S.H. et al. DNA binding site sequence directs glucocorticoid receptor structure and activity. Science 324, 407–410 (2009).

    Article  CAS  Google Scholar 

  18. Lefstin, J.A. & Yamamoto, K.R. Allosteric effects of DNA on transcriptional regulators. Nature 392, 885–888 (1998).

    Article  CAS  Google Scholar 

  19. Lavery, R., Moakher, M., Maddocks, J.H., Petkeviciute, D. & Zakrzewska, K. Conformational analysis of nucleic acids revisited: curves. Nucleic Acids Res. 37, 5917–5929 (2009).

    Article  CAS  Google Scholar 

  20. Rohs, R. et al. The role of DNA shape in protein-DNA recognition. Nature 461, 1248–1253 (2009).

    Article  CAS  Google Scholar 

  21. Zhuravleva, A. & Gierasch, L.M. Allosteric signal transmission in the nucleotide-binding domain of 70-kDa heat shock protein (Hsp70) molecular chaperones. Proc. Natl. Acad. Sci. USA 108, 6987–6992 (2011).

    Article  CAS  Google Scholar 

  22. Selvaratnam, R., Chowdhury, S., VanSchouwen, B. & Melacini, G. Mapping allostery through the covariance analysis of NMR chemical shifts. Proc. Natl. Acad. Sci. USA 108, 6133–6138 (2011).

    Article  CAS  Google Scholar 

  23. Masterson, L.R., Mascioni, A., Traaseth, N.J., Taylor, S.S. & Veglia, G. Allosteric cooperativity in protein kinase A. Proc. Natl. Acad. Sci. USA 105, 506–511 (2008).

    Article  CAS  Google Scholar 

  24. Heck, S. et al. A distinct modulating domain in glucocorticoid receptor monomers in the repression of activity of the transcription factor AP-1. EMBO J. 13, 4087–4095 (1994).

    Article  CAS  Google Scholar 

  25. Floor, S.N., Borja, M.S. & Gross, J.D. Interdomain dynamics and coactivation of the mRNA decapping enzyme Dcp2 are mediated by a gatekeeper tryptophan. Proc. Natl. Acad. Sci. USA 109, 2872–2877 (2012).

    Article  CAS  Google Scholar 

  26. Bain, D.L. et al. Glucocorticoid receptor-DNA interactions: binding energetics are the primary determinant of sequence-specific transcriptional activity. J. Mol. Biol. 422, 18–32 (2012).

    Article  CAS  Google Scholar 

  27. Farrow, N.A., Zhang, O., Forman-Kay, J.D. & Kay, L.E. A heteronuclear correlation experiment for simultaneous determination of 15N longitudinal decay and chemical exchange rates of systems in slow equilibrium. J. Biomol. NMR 4, 727–734 (1994).

    Article  CAS  Google Scholar 

  28. Iñiguez-Lluhí, J.A., Lou, D.Y. & Yamamoto, K.R. Three amino acid substitutions selectively disrupt the activation but not the repression function of the glucocorticoid receptor N terminus. J. Biol. Chem. 272, 4149–4156 (1997).

    Article  Google Scholar 

  29. Darimont, B.D. et al. Structure and specificity of nuclear receptor-coactivator interactions. Genes Dev. 12, 3343–3356 (1998).

    Article  CAS  Google Scholar 

  30. Bourguet, W., Ruff, M., Chambon, P., Gronemeyer, H. & Moras, D. Crystal structure of the ligand-binding domain of the human nuclear receptor RXR-α. Nature 375, 377–382 (1995).

    Article  CAS  Google Scholar 

  31. Egea, P.F. et al. Crystal structure of the human RXRα ligand-binding domain bound to its natural ligand: 9-cis retinoic acid. EMBO J. 19, 2592–2601 (2000).

    Article  CAS  Google Scholar 

  32. Lusher, S.J. et al. Structural basis for agonism and antagonism for a set of chemically related progesterone receptor modulators. J. Biol. Chem. 286, 35079–35086 (2011).

    Article  CAS  Google Scholar 

  33. Shiau, A.K. et al. The structural basis of estrogen receptor/coactivator recognition and the antagonism of this interaction by tamoxifen. Cell 95, 927–937 (1998).

    Article  CAS  Google Scholar 

  34. Brzozowski, A.M. et al. Molecular basis of agonism and antagonism in the oestrogen receptor. Nature 389, 753–758 (1997).

    Article  CAS  Google Scholar 

  35. Hall, J.M., McDonnell, D.P. & Korach, K.S. Allosteric regulation of estrogen receptor structure, function, and coactivator recruitment by different estrogen response elements. Mol. Endocrinol. 16, 469–486 (2002).

    Article  CAS  Google Scholar 

  36. Engel, K.B. & Yamamoto, K.R. The glucocorticoid receptor and the coregulator Brm selectively modulate each other's occupancy and activity in a gene-specific manner. Mol. Cell Biol. 31, 3267–3276 (2011).

    Article  CAS  Google Scholar 

  37. Wang, J.-C. et al. Novel arylpyrazole compounds selectively modulate glucocorticoid receptor regulatory activity. Genes Dev. 20, 689–699 (2006).

    Article  CAS  Google Scholar 

  38. Zhang, J. et al. DNA binding alters coactivator interaction surfaces of the intact VDR–RXR complex. Nat. Struct. Mol. Biol. 18, 556–563 (2011).

    Article  Google Scholar 

  39. Shulman, A.I., Larson, C., Mangelsdorf, D.J. & Ranganathan, R. Structural determinants of allosteric ligand activation in RXR heterodimers. Cell 116, 417–429 (2004).

    Article  CAS  Google Scholar 

  40. Rogatsky, I. Target-specific utilization of transcriptional regulatory surfaces by the glucocorticoid receptor. Proc. Natl. Acad. Sci. USA 100, 13845–13850 (2003).

    Article  CAS  Google Scholar 

  41. Tao, Y.-G., Xu, Y., Xu, H.E. & Simons, S.S. Mutations of glucocorticoid receptor differentially affect AF2 domain activity in a steroid-selective manner to alter the potency and efficacy of gene induction and repression. Biochemistry 47, 7648–7662 (2008).

    Article  CAS  Google Scholar 

  42. Lee, G.-S. & Simons, S.S. Jr. Ligand binding domain mutations of the glucocorticoid receptor selectively modify the effects with, but not binding of, cofactors. Biochemistry 50, 356–366 (2011).

    Article  CAS  Google Scholar 

  43. Joshi, R. et al. Functional specificity of a Hox protein mediated by the recognition of minor groove structure. Cell 131, 530–543 (2007).

    Article  CAS  Google Scholar 

  44. Slattery, M. et al. Cofactor binding evokes latent differences in DNA binding specificity between Hox proteins. Cell 147, 1270–1282 (2011).

    Article  CAS  Google Scholar 

  45. Scully, K.M. et al. Allosteric effects of Pit-1 DNA sites on long-term repression in cell type specification. Science 290, 1127–1131 (2000).

    Article  CAS  Google Scholar 

  46. McNally, J.G., Müller, W.G., Walker, D., Wolford, R. & Hager, G.L. The glucocorticoid receptor: rapid exchange with regulatory sites in living cells. Science 287, 1262–1265 (2000).

    Article  CAS  Google Scholar 

  47. Stavreva, D.A., Müller, W.G., Hager, G.L., Smith, C.L. & McNally, J.G. Rapid glucocorticoid receptor exchange at a promoter is coupled to transcription and regulated by chaperones and proteasomes. Mol. Cell Biol. 24, 2682–2697 (2004).

    Article  CAS  Google Scholar 

  48. Holmbeck, S.M., Dyson, H.J. & Wright, P.E. DNA-induced conformational changes are the basis for cooperative dimerization by the DNA binding domain of the retinoid X receptor. J. Mol. Biol. 284, 533–539 (1998).

    Article  CAS  Google Scholar 

  49. Ackers, G.K., Johnson, A.D. & Shea, M.A. Quantitative model for gene regulation by lambda phage repressor. Proc. Natl. Acad. Sci. USA 79, 1129–1133 (1982).

    Article  CAS  Google Scholar 

  50. Robblee, J.P., Miura, M.T. & Bain, D.L. Glucocorticoid receptor–promoter interactions: energetic dissection suggests a framework for the specificity of steroid receptor-mediated gene regulation. Biochemistry 51, 4463–4472 (2012).

    Article  CAS  Google Scholar 

  51. Hudson, W.H., Youn, C. & Ortlund, E.A. The structural basis of direct glucocorticoid-mediated transrepression. Nat. Struct. Mol. Biol. 20, 53–58 (2012).

    Article  Google Scholar 

  52. Sattler, M., Schleucher, J. & Griesinger, C. Heteronuclear multidimensional NMR experiments for the structure determination of proteins in solution employing pulsed field gradients. Prog. Nucl. Magn. Reson. Spectrosc. 34, 93–158 (1999).

    Article  CAS  Google Scholar 

  53. Salzmann, M., Wider, G., Pervushin, K., Senn, H. & Wüthrich, K. TROSY-type triple-resonance experiments for sequential NMR assignments of large proteins. J. Am. Chem. Soc. 121, 844–848 (1999).

    Article  CAS  Google Scholar 

  54. Talluri, S. & Wagner, G. An optimized 3D NOESY-HSQC. J. Magn. Reson. B. 112, 200–205 (1996).

    Article  CAS  Google Scholar 

  55. Salzmann, M., Pervushin, K., Wider, G., Senn, H. & Wüthrich, K. TROSY in triple-resonance experiments: new perspectives for sequential NMR assignment of large proteins. Proc. Natl. Acad. Sci. USA 95, 13585–13590 (1998).

    Article  CAS  Google Scholar 

  56. Delaglio, F. et al. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J. Biomol. NMR 6, 277–293 (1995).

    Article  CAS  Google Scholar 

  57. Farrow, N.A., Zhang, O., Forman-Kay, J.D. & Kay, L.E. A heteronuclear correlation experiment for simultaneous determination of 15N longitudinal decay and chemical exchange rates of systems in slow equilibrium. J. Biomol. NMR 4, 727–734 (1994).

    Article  CAS  Google Scholar 

  58. Langmead, B. & Salzberg, S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    Article  CAS  Google Scholar 

  59. Machanick, P. & Bailey, T.L. MEME-ChIP: motif analysis of large DNA datasets. Bioinformatics 27, 1696–1697 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Kelly (University of California (UC), San Francisco) and J. Pelton (UC Berkeley) for NMR support, J. Cheney and S. Floor for providing scripts for NMR analysis, and S. Cooper and S. Meijsing for developing GR ChIP-sequencing protocols. We thank R. Fletterick, A. Johnson, G. Narlikar and members of K.R.Y.'s lab for thoughtful discussions; and M. Knuesel and S. Meijsing for critical reading of the manuscript. This work was supported by US National Institutes of Health (NIH) grant CA020535 (K.R.Y.), the Biophysics Graduate Group training grant NIHT32GM008284 (K.M.K.), NIH grants GM08537 and 5K99CA149088 (M.A.P.), the Leukemia and Lymphoma Society Fellowship (M.A.P.), the Larry S. Hillblom Foundation Fellowship (L.C.W.), the Genentech and Sandler Foundation Graduate Fellowship (L.C.W.) and the Cancer Research Coordinating Committee Fellowship (L.C.W.).

Author information

Authors and Affiliations

Authors

Contributions

L.C.W. designed, performed and analyzed experiments. J.D.G. and L.C.W. designed and performed experiments for NMR sequential assignment. K.M.K. and L.C.W. designed, performed and analyzed SPR and FRET experiments. B.J.S. and L.C.W. designed and performed ChIP-sequencing experiments, and B.J.S. analyzed the data. M.A.P. and K.R.Y. contributed to the direction of project, and L.C.W. and K.R.Y. wrote the manuscript.

Corresponding author

Correspondence to Keith R Yamamoto.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 and Supplementary Tables 1 and 2 (PDF 11335 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Watson, L., Kuchenbecker, K., Schiller, B. et al. The glucocorticoid receptor dimer interface allosterically transmits sequence-specific DNA signals. Nat Struct Mol Biol 20, 876–883 (2013). https://doi.org/10.1038/nsmb.2595

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2595

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing