Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A bacterial-like mechanism for transcription termination by the Sen1p helicase in budding yeast

Subjects

Abstract

Transcription termination is essential to generate functional RNAs and to prevent disruptive polymerase collisions resulting from concurrent transcription. The yeast Sen1p helicase is involved in termination of most noncoding RNAs transcribed by RNA polymerase II (RNAPII). However, the mechanism of termination and the role of this protein have remained enigmatic. Here we address the mechanism of Sen1p-dependent termination by using a highly purified in vitro system. We show that Sen1p is the key enzyme of the termination reaction and reveal features of the termination mechanism. Like the bacterial termination factor Rho, Sen1p recognizes the nascent RNA and hydrolyzes ATP to dissociate the elongation complex. Sen1p-dependent termination is highly specific and, notably, does not require the C-terminal domain of RNAPII. We also show that termination is inhibited by RNA-DNA hybrids. Our results elucidate the role of Sen1p in controlling pervasive transcription.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Purified Sen1p elicits transcription termination in vitro.
Figure 2: Sen1-mediated transcription termination is primed by the nascent RNA.
Figure 3: Sen1-mediated termination requires ATP hydrolysis.
Figure 4: The Sen1p-related RNA helicase Upf1p cannot terminate RNAPII transcription.
Figure 5: Analysis of the roles of R loops and helicase activity in Sen1-dependent termination.
Figure 6: Sen1-dependent termination is restricted to eukaryotic RNAPII but does not require the CTD.
Figure 7: Model for NNS-dependent termination in vivo.

Similar content being viewed by others

References

  1. Lunde, B.M. et al. Cooperative interaction of transcription termination factors with the RNA polymerase II C-terminal domain. Nat. Struct. Mol. Biol. 17, 1195–1201 (2010).

    Article  CAS  Google Scholar 

  2. Mayer, A. et al. CTD tyrosine phosphorylation impairs termination factor recruitment to RNA polymerase II. Science 336, 1723–1725 (2012).

    Article  CAS  Google Scholar 

  3. Mandel, C.R. et al. Polyadenylation factor CPSF-73 is the pre-mRNA 3′-end-processing endonuclease. Nature 444, 953–956 (2006).

    Article  CAS  Google Scholar 

  4. Steinmetz, E.J., Conrad, N.K., Brow, D.A. & Corden, J.L. RNA-binding protein Nrd1 directs poly(A)-independent 3′-end formation of RNA polymerase II transcripts. Nature 413, 327–331 (2001).

    Article  CAS  Google Scholar 

  5. Thiebaut, M., Kisseleva-Romanova, E., Rougemaille, M., Boulay, J. & Libri, D. Transcription termination and nuclear degradation of cryptic unstable transcripts: a role for the nrd1-nab3 pathway in genome surveillance. Mol. Cell 23, 853–864 (2006).

    Article  CAS  Google Scholar 

  6. Arigo, J.T., Eyler, D.E., Carroll, K.L. & Corden, J.L. Termination of cryptic unstable transcripts is directed by yeast RNA-binding proteins Nrd1 and Nab3. Mol. Cell 23, 841–851 (2006).

    Article  CAS  Google Scholar 

  7. Jacquier, A. The complex eukaryotic transcriptome: unexpected pervasive transcription and novel small RNAs. Nat. Rev. Genet. 10, 833–844 (2009).

    Article  CAS  Google Scholar 

  8. Colin, J., Libri, D. & Porrua, O. Cryptic transcription and early termination in the control of gene expression. Genet. Res. Int. 2011, 653494 (2011).

    PubMed  PubMed Central  Google Scholar 

  9. Wyers, F. et al. Cryptic pol II transcripts are degraded by a nuclear quality control pathway involving a new poly(A) polymerase. Cell 121, 725–737 (2005).

    Article  CAS  Google Scholar 

  10. Creamer, T.J. et al. Transcriptome-wide binding sites for components of the Saccharomyces cerevisiae non-poly(A) termination pathway: Nrd1, Nab3, and Sen1. PLoS Genet. 7, e1002329 (2011).

    Article  CAS  Google Scholar 

  11. Porrua, O. et al. In vivo SELEX reveals novel sequence and structural determinants of Nrd1-Nab3-Sen1-dependent transcription termination. EMBO J. 31, 3935–3948 (2012).

    Article  CAS  Google Scholar 

  12. Wlotzka, W., Kudla, G., Granneman, S. & Tollervey, D. The nuclear RNA polymerase II surveillance system targets polymerase III transcripts. EMBO J. 30, 1790–1803 (2011).

    Article  CAS  Google Scholar 

  13. Vasiljeva, L., Kim, M., Mutschler, H., Buratowski, S. & Meinhart, A. The Nrd1–Nab3–Sen1 termination complex interacts with the Ser5-phosphorylated RNA polymerase II C-terminal domain. Nat. Struct. Mol. Biol. 15, 795–804 (2008).

    Article  CAS  Google Scholar 

  14. Kubicek, K. et al. Serine phosphorylation and proline isomerization in RNAP II CTD control recruitment of Nrd1. Genes Dev. 26, 1891–1896 (2012).

    Article  CAS  Google Scholar 

  15. Chinchilla, K. et al. Interactions of Sen1, Nrd1, and Nab3 with multiple phosphorylated forms of the Rpb1 C-terminal domain in Saccharomyces cerevisiae. Eukaryot. Cell 11, 417–429 (2012).

    Article  CAS  Google Scholar 

  16. DeMarini, D.J., Winey, M., Ursic, D., Webb, F. & Culbertson, M.R. SEN1, a positive effector of tRNA-splicing endonuclease in Saccharomyces cerevisiae. Mol. Cell. Biol. 12, 2154–2164 (1992).

    Article  CAS  Google Scholar 

  17. Finkel, J.S., Chinchilla, K., Ursic, D. & Culbertson, M.R. Sen1p performs two genetically separable functions in transcription and processing of U5 small nuclear RNA in Saccharomyces cerevisiae. Genetics 184, 107–118 (2010).

    Article  CAS  Google Scholar 

  18. Steinmetz, E.J. et al. Genome-wide distribution of yeast RNA polymerase II and its control by Sen1 helicase. Mol. Cell 24, 735–746 (2006).

    Article  CAS  Google Scholar 

  19. Skourti-Stathaki, K., Proudfoot, N.J. & Gromak, N. Human senataxin resolves RNA/DNA hybrids formed at transcriptional pause sites to promote Xrn2-dependent termination. Mol. Cell 42, 794–805 (2011).

    Article  CAS  Google Scholar 

  20. Wagschal, A. et al. Microprocessor, Setx, Xrn2, and Rrp6 co-operate to induce premature termination of transcription by RNAPII. Cell 150, 1147–1157 (2012).

    Article  CAS  Google Scholar 

  21. James, P.A. & Talbot, K. The molecular genetics of non-ALS motor neuron diseases. Biochim. Biophys. Acta 1762, 986–1000 (2006).

    Article  CAS  Google Scholar 

  22. Palau, F. & Espinos, C. Autosomal recessive cerebellar ataxias. Orphanet J. Rare Dis. 1, 47 (2006).

    Article  Google Scholar 

  23. Mischo, H.E. et al. Yeast Sen1 helicase protects the genome from transcription-associated instability. Mol. Cell 41, 21–32 (2011).

    Article  CAS  Google Scholar 

  24. Suraweera, A. et al. Senataxin, defective in ataxia oculomotor apraxia type 2, is involved in the defense against oxidative DNA damage. J. Cell Biol. 177, 969–979 (2007).

    Article  CAS  Google Scholar 

  25. Gudipati, R.K., Villa, T., Boulay, J. & Libri, D. Phosphorylation of RNA polymerase II C-terminal domain dictates transcription termination choice. Nat. Struct. Mol. Biol. 15, 786–794 (2008).

    Article  CAS  Google Scholar 

  26. Kopcewicz, K.A., O'Rourke, T.W. & Reines, D. Metabolic regulation of IMD2 transcription and an unusual DNA element that generates short transcripts. Mol. Cell. Biol. 27, 2821–2829 (2007).

    Article  CAS  Google Scholar 

  27. Steinmetz, E.J., Ng, S.B., Cloute, J.P. & Brow, D.A. cis- and trans-acting determinants of transcription termination by yeast RNA polymerase II. Mol. Cell. Biol. 26, 2688–2696 (2006).

    Article  CAS  Google Scholar 

  28. Kim, M. et al. The yeast Rat1 exonuclease promotes transcription termination by RNA polymerase II. Nature 432, 517–522 (2004).

    Article  CAS  Google Scholar 

  29. Calvo, O. & Manley, J.L. Evolutionarily conserved interaction between CstF-64 and PC4 links transcription, polyadenylation, and termination. Mol. Cell 7, 1013–1023 (2001).

    Article  CAS  Google Scholar 

  30. Greenblatt, J., Nodwell, J.R. & Mason, S.W. Transcriptional antitermination. Nature 364, 401–406 (1993).

    Article  CAS  Google Scholar 

  31. Logan, J., Falck-Pedersen, E., Darnell, J.E. Jr. & Shenk, T. A poly(A) addition site and a downstream termination region are required for efficient cessation of transcription by RNA polymerase II in the mouse β maj-globin gene. Proc. Natl. Acad. Sci. USA 84, 8306–8310 (1987).

    Article  CAS  Google Scholar 

  32. Zhang, Z., Fu, J. & Gilmour, D.S. CTD-dependent dismantling of the RNA polymerase II elongation complex by the pre-mRNA 3′-end processing factor, Pcf11. Genes Dev. 19, 1572–1580 (2005).

    Article  CAS  Google Scholar 

  33. Kim, M. et al. Distinct pathways for snoRNA and mRNA termination. Mol. Cell 24, 723–734 (2006).

    Article  CAS  Google Scholar 

  34. Kawauchi, J., Mischo, H., Braglia, P., Rondon, A. & Proudfoot, N.J. Budding yeast RNA polymerases I and II employ parallel mechanisms of transcriptional termination. Genes Dev. 22, 1082–1092 (2008).

    Article  CAS  Google Scholar 

  35. Kireeva, M.L., Komissarova, N., Waugh, D.S. & Kashlev, M. The 8-nucleotide-long RNA:DNA hybrid is a primary stability determinant of the RNA polymerase II elongation complex. J. Biol. Chem. 275, 6530–6536 (2000).

    Article  CAS  Google Scholar 

  36. Svejstrup, J.Q. Contending with transcriptional arrest during RNAPII transcript elongation. Trends Biochem. Sci. 32, 165–171 (2007).

    Article  CAS  Google Scholar 

  37. Lang, W.H., Platt, T. & Reeder, R.H. Escherichia coli rho factor induces release of yeast RNA polymerase II but not polymerase I or III. Proc. Natl. Acad. Sci. USA 95, 4900–4905 (1998).

    Article  CAS  Google Scholar 

  38. Peters, J.M., Vangeloff, A.D. & Landick, R. Bacterial transcription terminators: the RNA 3′-end chronicles. J. Mol. Biol. 412, 793–813 (2011).

    Article  CAS  Google Scholar 

  39. Bunick, D., Zandomeni, R., Ackerman, S. & Weinmann, R. Mechanism of RNA polymerase II–specific initiation of transcription in vitro: ATP requirement and uncapped runoff transcripts. Cell 29, 877–886 (1982).

    Article  CAS  Google Scholar 

  40. Fairman-Williams, M.E., Guenther, U.P. & Jankowsky, E. SF1 and SF2 helicases: family matters. Curr. Opin. Struct. Biol. 20, 313–324 (2010).

    Article  CAS  Google Scholar 

  41. Chakrabarti, S. et al. Molecular mechanisms for the RNA-dependent ATPase activity of Upf1 and its regulation by Upf2. Mol. Cell 41, 693–703 (2011).

    Article  CAS  Google Scholar 

  42. Cramer, P. Structure and function of RNA polymerase II. Adv. Protein Chem. 67, 1–42 (2004).

    Article  CAS  Google Scholar 

  43. Singh, N. et al. The Ess1 prolyl isomerase is required for transcription termination of small noncoding RNAs via the Nrd1 pathway. Mol. Cell 36, 255–266 (2009).

    Article  CAS  Google Scholar 

  44. Kalarickal, N.C., Ranjan, A., Kalyani, B.S., Wal, M. & Sen, R. A bacterial transcription terminator with inefficient molecular motor action but with a robust transcription termination function. J. Mol. Biol. 395, 966–982 (2010).

    Article  CAS  Google Scholar 

  45. Jankowsky, E. RNA helicases at work: binding and rearranging. Trends Biochem. Sci. 36, 19–29 (2011).

    Article  CAS  Google Scholar 

  46. Darzacq, X. et al. In vivo dynamics of RNA polymerase II transcription. Nat. Struct. Mol. Biol. 14, 796–806 (2007).

    Article  CAS  Google Scholar 

  47. Zenklusen, D., Larson, D.R. & Singer, R.H. Single-RNA counting reveals alternative modes of gene expression in yeast. Nat. Struct. Mol. Biol. 15, 1263–1271 (2008).

    Article  CAS  Google Scholar 

  48. Hazelbaker, D.Z., Marquardt, S., Wlotzka, W. & Buratowski, S. Kinetic competition between RNA Polymerase II and Sen1-dependent transcription termination. Mol. Cell 49, 55–66 (2013).

    Article  CAS  Google Scholar 

  49. Epshtein, V., Dutta, D., Wade, J. & Nudler, E. An allosteric mechanism of Rho-dependent transcription termination. Nature 463, 245–249 (2010).

    Article  CAS  Google Scholar 

  50. West, S., Gromak, N. & Proudfoot, N.J. Human 5′ → 3′ exonuclease Xrn2 promotes transcription termination at co-transcriptional cleavage sites. Nature 432, 522–525 (2004).

    Article  CAS  Google Scholar 

  51. Kim, H.D., Choe, J. & Seo, Y.S. The sen1+ gene of Schizosaccharomyces pombe, a homologue of budding yeast SEN1, encodes an RNA and DNA helicase. Biochemistry 38, 14697–14710 (1999).

    Article  CAS  Google Scholar 

  52. Ghaemmaghami, S. et al. Global analysis of protein expression in yeast. Nature 425, 737–741 (2003).

    Article  CAS  Google Scholar 

  53. Borggrefe, T., Davis, R., Bareket-Samish, A. & Kornberg, R.D. Quantitation of the RNA polymerase II transcription machinery in yeast. J. Biol. Chem. 276, 47150–47153 (2001).

    Article  CAS  Google Scholar 

  54. Svejstrup, J.Q. et al. Evidence for a mediator cycle at the initiation of transcription. Proc. Natl. Acad. Sci. USA 94, 6075–6078 (1997).

    Article  CAS  Google Scholar 

  55. Sydow, J.F. et al. Structural basis of transcription: mismatch-specific fidelity mechanisms and paused RNA polymerase II with frayed RNA. Mol. Cell 34, 710–721 (2009).

    Article  CAS  Google Scholar 

  56. Studier, F.W. Protein production by auto-induction in high density shaking cultures. Protein Expr. Purif. 41, 207–234 (2005).

    Article  CAS  Google Scholar 

  57. Rigaut, G. et al. A generic protein purification method for protein complex characterization and proteome exploration. Nat. Biotechnol. 17, 1030–1032 (1999).

    Article  CAS  Google Scholar 

  58. Fiorini, F., Bonneau, F. & Le Hir, H. Biochemical characterization of the RNA helicase UPF1 involved in nonsense-mediated mRNA decay. Methods Enzymol. 511, 255–274 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We wish to thank E. Lehman and P. Cramer (Gene Center, Munich, Germany) for initial help with the in vitro transcription assays and for the gift of the His-tagged Rpb3 strain35 and plasmid pET21b(+)-Rpb4-7; F. Fiorini and H. Le Hir (Ecole Normale Supérieure, Paris, France) for the gift of Upf1 variants and help with the ATPase assays; M. Swanson (University of Florida, Gainesville, Florida, USA) for the gift of anti-Nab3p antibody; T. Villa for constructing the DL1774 strain; K. Tanner, M. Boudavillain, T. Villa, E. Pearson, C. Moore and T. H. Jensen for critical reading of the manuscript; M.-C. Daugeron, T. Villa and the other members of the Libri lab for helpful discussions; and S. Buratowski, E. Pearson and C. Moore for sharing results before publication. This work was supported by the Danish National Research Foundation, the French Agence Nationale pour la Recherche (ANR-08-Blan-0038-01, to D.L.) and the French Centre National de la Recherche Scientifique. O.P. was supported by a European Molecular Biology Organization Long Term fellowship and is presently funded by the French Fondation pour la Recherche Médicale. This research was carried out within the scope of the Associated European Laboratory 'Laboratory of Nuclear RNA Metabolism'.

Author information

Authors and Affiliations

Authors

Contributions

O.P. designed and performed experiments and wrote the paper. D.L. designed experiments and wrote the paper.

Corresponding authors

Correspondence to Odil Porrua or Domenico Libri.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 and Supplementary Table 1 (PDF 456 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Porrua, O., Libri, D. A bacterial-like mechanism for transcription termination by the Sen1p helicase in budding yeast. Nat Struct Mol Biol 20, 884–891 (2013). https://doi.org/10.1038/nsmb.2592

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2592

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing