Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Atg12–Atg5 conjugate enhances E2 activity of Atg3 by rearranging its catalytic site

Abstract

Two autophagy-related ubiquitin-like systems have unique features: the E2 enzyme Atg3 conjugates the ubiquitin-like protein Atg8 to the lipid phosphatidylethanolamine, and the other ubiquitin-like protein conjugate Atg12–Atg5 promotes that conjugase activity of Atg3. Here, we elucidate the mode of this action of Atg12–Atg5 as a new E3 enzyme by using Saccharomyces cerevisiae proteins. Biochemical analyses based on structural information suggest that Atg3 requires a threonine residue to catalyze the conjugation reaction instead of the typical asparagine residue used by other E2 enzymes. Moreover, the catalytic cysteine residue of Atg3 is arranged in the catalytic center such that the conjugase activity is suppressed; Atg12–Atg5 induces a reorientation of the cysteine residue toward the threonine residue, which enhances the conjugase activity of Atg3. Thus, this study reveals the mechanism of the key reaction that drives membrane biogenesis during autophagy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Thr213 of Atg3 is required for its conjugase activity.
Figure 2: Atg12–Atg5 induces a conformational change in the Atg3 catalytic site.
Figure 3: The conformational change in Atg3 is associated with conjugase activity.
Figure 4: Phe293 is involved in suppression of Atg3 conjugase activity.
Figure 5: His236 is required for both the basal and Atg12–Atg5-stimulated conjugase activities of Atg3.
Figure 6: Model of Atg3 activation by Atg12–Atg5.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Mizushima, N. & Komatsu, M. Autophagy: renovation of cells and tissues. Cell 147, 728–741 (2011).

    Article  CAS  Google Scholar 

  2. Mizushima, N., Levine, B., Cuervo, A.M. & Klionsky, D.J. Autophagy fights disease through cellular self-digestion. Nature 451, 1069–1075 (2008).

    Article  CAS  Google Scholar 

  3. Nakatogawa, H., Suzuki, K., Kamada, Y. & Ohsumi, Y. Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nat. Rev. Mol. Cell Biol. 10, 458–467 (2009).

    Article  CAS  Google Scholar 

  4. Chen, Y. & Klionsky, D.J. The regulation of autophagy – unanswered questions. J. Cell Sci. 124, 161–170 (2011).

    Article  CAS  Google Scholar 

  5. Mizushima, N., Yoshimori, T. & Ohsumi, Y. The role of Atg proteins in autophagosome formation. Annu. Rev. Cell Dev. Biol. 27, 107–132 (2011).

    Article  CAS  Google Scholar 

  6. Rubinsztein, D.C., Shpilka, T. & Elazar, Z. Mechanisms of autophagosome biogenesis. Curr. Biol. 22, R29–R34 (2012).

    Article  CAS  Google Scholar 

  7. Yang, Z. & Klionsky, D.J. Eaten alive: a history of macroautophagy. Nat. Cell Biol. 12, 814–822 (2010).

    Article  CAS  Google Scholar 

  8. Kirisako, T. et al. The reversible modification regulates the membrane-binding state of Apg8/Aut7 essential for autophagy and the cytoplasm to vacuole targeting pathway. J. Cell Biol. 151, 263–276 (2000).

    Article  CAS  Google Scholar 

  9. Kim, J., Huang, W.P. & Klionsky, D.J. Membrane recruitment of Aut7p in the autophagy and cytoplasm to vacuole targeting pathways requires Aut1p, Aut2p, and the autophagy conjugation complex. J. Cell Biol. 152, 51–64 (2001).

    Article  CAS  Google Scholar 

  10. Ichimura, Y. et al. A ubiquitin-like system mediates protein lipidation. Nature 408, 488–492 (2000).

    Article  CAS  Google Scholar 

  11. Kirisako, T. et al. Formation process of autophagosome is traced with Apg8/Aut7p in yeast. J. Cell Biol. 147, 435–446 (1999).

    Article  CAS  Google Scholar 

  12. Nakatogawa, H., Ichimura, Y. & Ohsumi, Y. Atg8, a ubiquitin-like protein required for autophagosome formation, mediates membrane tethering and hemifusion. Cell 130, 165–178 (2007).

    Article  CAS  Google Scholar 

  13. Xie, Z., Nair, U. & Klionsky, D.J. Atg8 controls phagophore expansion during autophagosome formation. Mol. Biol. Cell 19, 3290–3298 (2008).

    Article  CAS  Google Scholar 

  14. Nakatogawa, H., Ishii, J., Asai, E. & Ohsumi, Y. Atg4 recycles inappropriately lipidated Atg8 to promote autophagosome biogenesis. Autophagy 8, 177–186 (2012).

    Article  CAS  Google Scholar 

  15. Nair, U. et al. A role for Atg8-PE deconjugation in autophagosome biogenesis. Autophagy 8, 780–793 (2012).

    Article  CAS  Google Scholar 

  16. Yu, Z.Q. et al. Dual roles of Atg8-PE deconjugation by Atg4 in autophagy. Autophagy 8, 883–892 (2012).

    Article  CAS  Google Scholar 

  17. Mizushima, N. et al. A protein conjugation system essential for autophagy. Nature 395, 395–398 (1998).

    Article  CAS  Google Scholar 

  18. Hanada, T. et al. The Atg12–Atg5 conjugate has a novel E3-like activity for protein lipidation in autophagy. J. Biol. Chem. 282, 37298–37302 (2007).

    Article  CAS  Google Scholar 

  19. Fujioka, Y. et al. In vitro reconstitution of plant ATG8 and ATG12 conjugation systems essential for autophagy. J. Biol. Chem. 283, 1921–1928 (2008).

    Article  CAS  Google Scholar 

  20. Suzuki, N.N., Yoshimoto, K., Fujioka, Y., Ohsumi, Y. & Inagaki, F. The crystal structure of plant ATG12 and its biological implication in autophagy. Autophagy 1, 119–126 (2005).

    Article  CAS  Google Scholar 

  21. Matsushita, M. et al. Structure of Atg5-Atg16, a complex essential for autophagy. J. Biol. Chem. 282, 6763–6772 (2007).

    Article  CAS  Google Scholar 

  22. Yamada, Y. et al. The crystal structure of Atg3, an autophagy-related ubiquitin carrier protein (E2) enzyme that mediates Atg8 lipidation. J. Biol. Chem. 282, 8036–8043 (2007).

    Article  CAS  Google Scholar 

  23. Yamaguchi, M. et al. Autophagy-related protein 8 (Atg8) family interacting motif in Atg3 mediates the Atg3-Atg8 interaction and is crucial for the cytoplasm-to-vacuole targeting pathway. J. Biol. Chem. 285, 29599–29607 (2010).

    Article  CAS  Google Scholar 

  24. Tong, H., Hateboer, G., Perrakis, A., Bernards, R. & Sixma, T.K. Crystal structure of murine/human Ubc9 provides insight into the variability of the ubiquitin-conjugating system. J. Biol. Chem. 272, 21381–21387 (1997).

    Article  CAS  Google Scholar 

  25. Wu, P.Y. et al. A conserved catalytic residue in the ubiquitin-conjugating enzyme family. EMBO J. 22, 5241–5250 (2003).

    Article  CAS  Google Scholar 

  26. Yunus, A.A. & Lima, C.D. Lysine activation and functional analysis of E2-mediated conjugation in the SUMO pathway. Nat. Struct. Mol. Biol. 13, 491–499 (2006).

    Article  CAS  Google Scholar 

  27. Ichimura, Y. et al. In vivo and in vitro reconstitution of Atg8 conjugation essential for autophagy. J. Biol. Chem. 279, 40584–40592 (2004).

    Article  CAS  Google Scholar 

  28. Oh-oka, K., Nakatogawa, H. & Ohsumi, Y. Physiological pH and acidic phospholipids contribute to substrate specificity in lipidation of Atg8. J. Biol. Chem. 283, 21847–21852 (2008).

    Article  CAS  Google Scholar 

  29. Frand, A.R. & Kaiser, C.A. Ero1p oxidizes protein disulfide isomerase in a pathway for disulfide bond formation in the endoplasmic reticulum. Mol. Cell 4, 469–477 (1999).

    Article  CAS  Google Scholar 

  30. Cevc, G. Phospholipids Handbook (Marcel Dekker, 1993).

  31. Suzuki, K. et al. The pre-autophagosomal structure organized by concerted functions of APG genes is essential for autophagosome formation. EMBO J. 20, 5971–5981 (2001).

    Article  CAS  Google Scholar 

  32. Yamaguchi, M. et al. Noncanonical recognition and UBL loading of distinct E2s by autophagy-essential Atg7. Nat. Struct. Mol. Biol. 19, 1250–1256 (2012).

    Article  CAS  Google Scholar 

  33. Hanada, T., Satomi, Y., Takao, T. & Ohsumi, Y. The amino-terminal region of Atg3 is essential for association with phosphatidylethanolamine in Atg8 lipidation. FEBS Lett. 583, 1078–1083 (2009).

    Article  CAS  Google Scholar 

  34. Zinser, E. & Daum, G. Isolation and biochemical characterization of organelles from the yeast, Saccharomyces cerevisiae. Yeast 11, 493–536 (1995).

    Article  CAS  Google Scholar 

  35. Adams, A., Gottschling, D.E., Kaiser, C.A. & Stearns, T. Methods in Yeast Genetics (Cold Spring Harbor Laboratory, 1998).

  36. Brachmann, C.B. et al. Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast 14, 115–132 (1998).

    Article  CAS  Google Scholar 

  37. Janke, C. et al. A versatile toolbox for PCR-based tagging of yeast genes: new fluorescent proteins, more markers and promoter substitution cassettes. Yeast 21, 947–962 (2004).

    Article  CAS  Google Scholar 

  38. Yamada, Y. et al. Crystallization and preliminary X-ray analysis of Atg3. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 62, 1016–1017 (2006).

    Article  CAS  Google Scholar 

  39. Noda, T., Matsuura, A., Wada, Y. & Ohsumi, Y. Novel system for monitoring autophagy in the yeast Saccharomyces cerevisiae. Biochem. Biophys. Res. Commun. 210, 126–132 (1995).

    Article  CAS  Google Scholar 

  40. Hanada, T. & Ohsumi, Y. Structure-function relationship of Atg12, a ubiquitin-like modifier essential for autophagy. Autophagy 1, 110–118 (2005).

    Article  CAS  Google Scholar 

  41. Nakatogawa, H. & Ohsumi, Y. SDS-PAGE techniques to study ubiquitin-like conjugation systems in yeast autophagy. Methods Mol. Biol. 832, 519–529 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the members of our laboratories for materials and helpful discussions. This work was supported in part by the Funding Program for Next Generation World-Leading Researchers HO220017 (to H.N.) and Grants-in-Aid for Scientific Research 23000015 (to Y.O.) from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Author information

Authors and Affiliations

Authors

Contributions

M.S.-N. performed in vitro and in vivo experiments with the help of E.A., H.K. and J.I.; K.M., N.N.N. and F.I. contributed to structural analysis. M.S.-N., H.N. and Y.O. contributed to experimental design and data interpretation and wrote the manuscript.

Corresponding authors

Correspondence to Hitoshi Nakatogawa or Yoshinori Ohsumi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 and Supplementary Note (PDF 3164 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sakoh-Nakatogawa, M., Matoba, K., Asai, E. et al. Atg12–Atg5 conjugate enhances E2 activity of Atg3 by rearranging its catalytic site. Nat Struct Mol Biol 20, 433–439 (2013). https://doi.org/10.1038/nsmb.2527

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2527

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing