Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Integration of the accelerator Aha1 in the Hsp90 co-chaperone cycle

Abstract

Heat-shock protein 90 (Hsp90) is an ATP-dependent molecular chaperone that associates dynamically with various co-chaperones during its chaperone cycle. Here we analyzed the role of the activating co-chaperone Aha1 in the progression of the yeast Hsp90 chaperone cycle and identified a critical ternary Hsp90 complex containing the co-chaperones Aha1 and Cpr6. Aha1 accelerates the intrinsically slow conformational transitions of Hsp90 to an N-terminally associated state but does not fully close the nucleotide-binding pocket yet. Cpr6 increases the affinity between Aha1 and Hsp90 and further stimulates the Hsp90 ATPase activity. Synergistically, Aha1 and Cpr6 displace the inhibitory co-chaperone Sti1 from Hsp90. To complete the cycle, Aha1 is released by the co-chaperone p23. Thus, at distinct steps during the Hsp90 chaperone cycle, co-chaperones selectively trap statistically distributed Hsp90 conformers and thus turn Hsp90 into a deterministic machine.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Effect of Hsp90 conformation on co-chaperone interactions.
Figure 2: Aha1 and Cpr6 form ternary complexes with Hsp90.
Figure 3: Aha1 and Cpr6 stabilize the ATPase-competent conformation of Hsp90.
Figure 4: Aha1 facilitates the progression of the Hsp90 co-chaperone cycle.
Figure 5: Aha1 in the Hsp90 chaperone cycle.

References

  1. Zhao, R. et al. Navigating the chaperone network: an integrative map of physical and genetic interactions mediated by the hsp90 chaperone. Cell 120, 715–727 (2005).

    CAS  Article  Google Scholar 

  2. Young, J.C., Moarefi, I. & Hartl, F.U. Hsp90: a specialized but essential protein-folding tool. J. Cell Biol. 154, 267–273 (2001).

    CAS  Article  Google Scholar 

  3. Richter, K., Haslbeck, M. & Buchner, J. The heat shock response: life on the verge of death. Mol. Cell 40, 253–266 (2010).

    CAS  Article  Google Scholar 

  4. Taipale, M., Jarosz, D.F. & Lindquist, S. HSP90 at the hub of protein homeostasis: emerging mechanistic insights. Nat. Rev. Mol. Cell Biol. 11, 515–528 (2010).

    CAS  Article  Google Scholar 

  5. Picard, D. Heat-shock protein 90, a chaperone for folding and regulation. Cell. Mol. Life Sci. 59, 1640–1648 (2002).

    CAS  Article  Google Scholar 

  6. McClellan, A.J. et al. Diverse cellular functions of the Hsp90 molecular chaperone uncovered using systems approaches. Cell 131, 121–135 (2007).

    CAS  Article  Google Scholar 

  7. Tsutsumi, S. et al. Hsp90 charged-linker truncation reverses the functional consequences of weakened hydrophobic contacts in the N domain. Nat. Struct. Mol. Biol. 16, 1141–1147 (2009).

    CAS  Article  Google Scholar 

  8. Prodromou, C. The 'active life' of Hsp90 complexes. Biochim. Biophys. Acta 1823, 614–623 (2012).

    CAS  Article  Google Scholar 

  9. Ali, M.M. et al. Crystal structure of an Hsp90-nucleotide-p23/Sba1 closed chaperone complex. Nature 440, 1013–1017 (2006).

    CAS  Article  Google Scholar 

  10. Hessling, M., Richter, K. & Buchner, J. Dissection of the ATP-induced conformational cycle of the molecular chaperone Hsp90. Nat. Struct. Mol. Biol. 16, 287–293 (2009).

    CAS  Article  Google Scholar 

  11. Prodromou, C. et al. The ATPase cycle of Hsp90 drives a molecular 'clamp' via transient dimerization of the N-terminal domains. EMBO J. 19, 4383–4392 (2000).

    CAS  Article  Google Scholar 

  12. Shiau, A.K., Harris, S.F., Southworth, D.R. & Agard, D.A. Structural Analysis of E. coli hsp90 reveals dramatic nucleotide-dependent conformational rearrangements. Cell 127, 329–340 (2006).

    CAS  Article  Google Scholar 

  13. Pullen, L. & Bolon, D.N. Enforced N-domain proximity stimulates Hsp90 ATPase activity and is compatible with function in vivo. J. Biol. Chem. 286, 11091–11098 (2011).

    CAS  Article  Google Scholar 

  14. Southworth, D.R. & Agard, D.A. Species-dependent ensembles of conserved conformational states define the Hsp90 chaperone ATPase cycle. Mol. Cell 32, 631–640 (2008).

    CAS  Article  Google Scholar 

  15. Ratzke, C., Berkemeier, F. & Hugel, T. Heat shock protein 90's mechanochemical cycle is dominated by thermal fluctuations. Proc. Natl. Acad. Sci. USA 109, 161–166 (2012).

    CAS  Article  Google Scholar 

  16. Mayer, M.P., Nikolay, R. & Bukau, B. Aha, another regulator for hsp90 chaperones. Mol. Cell 10, 1255–1256 (2002).

    CAS  Article  Google Scholar 

  17. Richter, K., Muschler, P., Hainzl, O., Reinstein, J. & Buchner, J. Sti1 is a non-competitive inhibitor of the Hsp90 ATPase. Binding prevents the N-terminal dimerization reaction during the ATPase cycle. J. Biol. Chem. 278, 10328–10333 (2003).

    CAS  Article  Google Scholar 

  18. Boulon, S. et al. HSP90 and its R2TP/Prefoldin-like cochaperone are involved in the cytoplasmic assembly of RNA polymerase II. Mol. Cell 39, 912–924 (2010).

    CAS  Article  Google Scholar 

  19. Li, J., Soroka, J. & Buchner, J. The Hsp90 chaperone machinery: conformational dynamics and regulation by co-chaperones. Biochim. Biophys. Acta 1823, 624–635 (2012).

    CAS  Article  Google Scholar 

  20. Kosano, H., Stensgard, B., Charlesworth, M.C., McMahon, N. & Toft, D. The assembly of progesterone receptor-hsp90 complexes using purified proteins. J. Biol. Chem. 273, 32973–32979 (1998).

    CAS  Article  Google Scholar 

  21. Smith, D.F. Dynamics of heat shock protein 90-progesterone receptor binding and the disactivation loop model for steroid receptor complexes. Mol. Endocrinol. 7, 1418–1429 (1993).

    CAS  PubMed  Google Scholar 

  22. Freeman, B.C., Felts, S.J., Toft, D.O. & Yamamoto, K.R. The p23 molecular chaperones act at a late step in intracellular receptor action to differentially affect ligand efficacies. Genes Dev. 14, 422–434 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Chen, S. & Smith, D.F. Hop as an adaptor in the heat shock protein 70 (Hsp70) and hsp90 chaperone machinery. J. Biol. Chem. 273, 35194–35200 (1998).

    CAS  Article  Google Scholar 

  24. Li, J., Richter, K. & Buchner, J. Mixed Hsp90-cochaperone complexes are important for the progression of the reaction cycle. Nat. Struct. Mol. Biol. 18, 61–66 (2011).

    Article  Google Scholar 

  25. Ebong, I.O. et al. Heterogeneity and dynamics in the assembly of the heat shock protein 90 chaperone complexes. Proc. Natl. Acad. Sci. USA 108, 17939–17944 (2011).

    CAS  Article  Google Scholar 

  26. Hildenbrand, Z.L. et al. Hsp90 can accommodate the simultaneous binding of the FKBP52 and HOP proteins. Oncotarget 2, 43–58 (2011).

    Article  Google Scholar 

  27. Retzlaff, M. et al. Asymmetric activation of the hsp90 dimer by its cochaperone aha1. Mol. Cell 37, 344–354 (2010).

    CAS  Article  Google Scholar 

  28. Mayor, A., Martinon, F., De Smedt, T., Petrilli, V. & Tschopp, J. A crucial function of SGT1 and HSP90 in inflammasome activity links mammalian and plant innate immune responses. Nat. Immunol. 8, 497–503 (2007).

    CAS  Article  Google Scholar 

  29. Panaretou, B. et al. Activation of the ATPase activity of hsp90 by the stress-regulated cochaperone aha1. Mol. Cell 10, 1307–1318 (2002).

    CAS  Article  Google Scholar 

  30. Koulov, A.V. et al. Biological and structural basis for Aha1 regulation of Hsp90 ATPase activity in maintaining proteostasis in the human disease cystic fibrosis. Mol. Biol. Cell 21, 871–884 (2010).

    CAS  Article  Google Scholar 

  31. Harst, A., Lin, H. & Obermann, W.M. Aha1 competes with Hop, p50 and p23 for binding to the molecular chaperone Hsp90 and contributes to kinase and hormone receptor activation. Biochem. J. 387, 789–796 (2005).

    CAS  Article  Google Scholar 

  32. Mayr, C., Richter, K., Lilie, H. & Buchner, J. Cpr6 and Cpr7, two closely related Hsp90-associated immunophilins from Saccharomyces cerevisiae, differ in their functional properties. J. Biol. Chem. 275, 34140–34146 (2000).

    CAS  Article  Google Scholar 

  33. Duina, A.A., Chang, H.C., Marsh, J.A., Lindquist, S. & Gaber, R.F. A cyclophilin function in Hsp90-dependent signal transduction. Science 274, 1713–1715 (1996).

    CAS  Article  Google Scholar 

  34. Richter, K., Muschler, P., Hainzl, O. & Buchner, J. Coordinated ATP hydrolysis by the Hsp90 dimer. J. Biol. Chem. 276, 33689–33696 (2001).

    CAS  Article  Google Scholar 

  35. Weikl, T. et al. C-terminal regions of Hsp90 are important for trapping the nucleotide during the ATPase cycle. J. Mol. Biol. 303, 583–592 (2000).

    CAS  Article  Google Scholar 

  36. Johnson, J.L. & Toft, D.O. Binding of p23 and hsp90 during assembly with the progesterone receptor. Mol. Endocrinol. 9, 670–678 (1995).

    CAS  PubMed  Google Scholar 

  37. Johnson, J., Corbisier, R., Stensgard, B. & Toft, D. The involvement of p23, hsp90, and immunophilins in the assembly of progesterone receptor complexes. J. Steroid Biochem. Mol. Biol. 56, 31–37 (1996).

    CAS  Article  Google Scholar 

  38. Zuehlke, A.D. & Johnson, J.L. Chaperoning the chaperone: a role for the co-chaperone Cpr7 in modulating Hsp90 function in Saccharomyces cerevisiae. Genetics 191, 805–814 (2012).

    CAS  Article  Google Scholar 

  39. Richter, K. et al. Conserved conformational changes in the ATPase cycle of human Hsp90. J. Biol. Chem. 283, 17757–17765 (2008).

    CAS  Article  Google Scholar 

  40. McLaughlin, S.H., Smith, H.W. & Jackson, S.E. Stimulation of the weak ATPase activity of human hsp90 by a client protein. J. Mol. Biol. 315, 787–798 (2002).

    CAS  Article  Google Scholar 

  41. McLaughlin, S.H. et al. The co-chaperone p23 arrests the Hsp90 ATPase cycle to trap client proteins. J. Mol. Biol. 356, 746–758 (2006).

    CAS  Article  Google Scholar 

  42. Hagn, F. et al. Structural analysis of the interaction between Hsp90 and the tumor suppressor protein p53. Nat. Struct. Mol. Biol. 18, 1086–1093 (2011).

    CAS  Article  Google Scholar 

  43. Street, T.O., Lavery, L.A. & Agard, D.A. Substrate binding drives large-scale conformational changes in the Hsp90 molecular chaperone. Mol. Cell 42, 96–105 (2011).

    CAS  Article  Google Scholar 

  44. Park, S.J., Borin, B.N., Martinez-Yamout, M.A. & Dyson, H.J. The client protein p53 adopts a molten globule-like state in the presence of Hsp90. Nat. Struct. Mol. Biol. 18, 537–541 (2011).

    CAS  Article  Google Scholar 

  45. Buchner, J., Weikl, T., Bugl, H., Pirkl, F. & Bose, S. Purification of Hsp90 partner proteins Hop/p60, p23, and FKBP52. Methods Enzymol. 290, 418–429 (1998).

    CAS  Article  Google Scholar 

  46. Ali, J.A., Jackson, A.P., Howells, A.J. & Maxwell, A. The 43-kilodalton N-terminal fragment of the DNA gyrase B protein hydrolyzes ATP and binds coumarin drugs. Biochemistry 32, 2717–2724 (1993).

    CAS  Article  Google Scholar 

  47. Winzeler, E.A. et al. Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285, 901–906 (1999).

    CAS  Article  Google Scholar 

  48. Kroe, R.R. & Laue, T.M. NUTS and BOLTS: applications of fluorescence-detected sedimentation. Anal. Biochem. 390, 1–13 (2009).

    CAS  Article  Google Scholar 

  49. Laue, T.M. & Stafford, W.F. III. Modern applications of analytical ultracentrifugation. Annu. Rev. Biophys. Biomol. Struct. 28, 75–100 (1999).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank J. Soroka (Center for Integrated Protein Science, Department Chemie, Technische Universität München, München, Germany) who provided labeled Hsp90, Aha1 and purified Hsp90 for the subunit-exchange experiment. J.B. and K.R. were supported by the Deutsche Forschungsgemeinschaft (grants SFB1035 A3 and RI1873/1-2, respectively) and by the Fonds der chemischen Industrie. J.B. was also supported by the German Bundesministerium für Bildung und Forschung (Federal Ministry of Education and Research) as part of ProNet-T3. J.R. was supported by the Max Planck Society.

Author information

Authors and Affiliations

Authors

Contributions

J.L. designed and performed experiments, evaluated the results and wrote the manuscript. K.R. conducted aUC experiments and contributed to writing the manuscript. J.R. conducted and analyzed stopped-flow experiments and contributed to writing the manuscript. J.B. designed and supervised experiments and wrote the manuscript.

Corresponding author

Correspondence to Johannes Buchner.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 (PDF 1459 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Li, J., Richter, K., Reinstein, J. et al. Integration of the accelerator Aha1 in the Hsp90 co-chaperone cycle. Nat Struct Mol Biol 20, 326–331 (2013). https://doi.org/10.1038/nsmb.2502

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2502

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing