Abstract
Topoisomerase I (TOP1) inhibitors are an important class of anticancer drugs. The cytotoxicity of TOP1 inhibitors can be modulated by replication fork reversal through a process that requires poly(ADP-ribose) polymerase (PARP) activity. Whether regressed forks can efficiently restart and what factors are required to restart fork progression after fork reversal are still unknown. We have combined biochemical and EM approaches with single-molecule DNA fiber analysis to identify a key role for human RECQ1 helicase in replication fork restart after TOP1 inhibition that is not shared by other human RecQ proteins. We show that the poly(ADP-ribosyl)ation activity of PARP1 stabilizes forks in the regressed state by limiting their restart by RECQ1. These studies provide new mechanistic insights into the roles of RECQ1 and PARP in DNA replication and offer molecular perspectives to potentiate chemotherapeutic regimens based on TOP1 inhibition.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Koster, D.A., Palle, K., Bot, E.S., Bjornsti, M.A. & Dekker, N.H. Antitumour drugs impede DNA uncoiling by topoisomerase I. Nature 448, 213–217 (2007).
Pommier, Y., Leo, E., Zhang, H. & Marchand, C. DNA topoisomerases and their poisoning by anticancer and antibacterial drugs. Chem. Biol. 17, 421–433 (2010).
Pommier, Y. Topoisomerase I inhibitors: camptothecins and beyond. Nat. Rev. Cancer 6, 789–802 (2006).
Rodriguez-Galindo, C. et al. Clinical use of topoisomerase I inhibitors in anticancer treatment. Med. Pediatr. Oncol. 35, 385–402 (2000).
Pommier, Y. et al. Repair of and checkpoint response to topoisomerase I–mediated DNA damage. Mutat. Res. 532, 173–203 (2003).
Koster, D.A., Crut, A., Shuman, S., Bjornsti, M.A. & Dekker, N.H. Cellular strategies for regulating DNA supercoiling: a single-molecule perspective. Cell 142, 519–530 (2010).
Ray Chaudhuri, A. et al. Topoisomerase I poisoning results in PARP-mediated replication fork reversal. Nat. Struct. Mol. Biol. 19, 417–423 (2012).
Sugimura, K., Takebayashi, S., Taguchi, H., Takeda, S. & Okumura, K. PARP-1 ensures regulation of replication fork progression by homologous recombination on damaged DNA. J. Cell Biol. 183, 1203–1212 (2008).
Bernstein, K.A., Gangloff, S. & Rothstein, R. The RecQ DNA helicases in DNA repair. Annu. Rev. Genet. 44, 393–417 (2010).
Chu, W.K. & Hickson, I.D. RecQ helicases: multifunctional genome caretakers. Nat. Rev. Cancer 9, 644–654 (2009).
Bachrati, C.Z. & Hickson, I.D. RecQ helicases: guardian angels of the DNA replication fork. Chromosoma 117, 219–233 (2008).
Bohr, V.A. Rising from the RecQ-age: the role of human RecQ helicases in genome maintenance. Trends Biochem. Sci. 33, 609–620 (2008).
Vindigni, A., Marino, F. & Gileadi, O. Probing the structural basis of RecQ helicase function. Biophys. Chem. 149, 67–77 (2010).
Bugreev, D.V., Rossi, M.J. & Mazin, A.V. Cooperation of RAD51 and RAD54 in regression of a model replication fork. Nucleic Acids Res. 39, 2153–2164 (2011).
Machwe, A., Karale, R., Xu, X., Liu, Y. & Orren, D.K. The Werner and Bloom syndrome proteins help resolve replication blockage by converting (regressed) Holliday junctions to functional replication forks. Biochemistry 50, 6774–6788 (2011).
Machwe, A., Lozada, E., Wold, M.S., Li, G.M. & Orren, D.K. Molecular cooperation between the Werner syndrome protein and replication protein A in relation to replication fork blockage. J. Biol. Chem. 286, 3497–3508 (2011).
Hickson, I.D. RecQ helicases: caretakers of the genome. Nat. Rev. Cancer 3, 169–178 (2003).
Seki, M. et al. Purification of two DNA-dependent adenosinetriphosphatases having DNA helicase activity from HeLa cells and comparison of the properties of the two enzymes. J. Biochem. 115, 523–531 (1994).
Thangavel, S. et al. Human RECQ1 and RECQ4 helicases play distinct roles in DNA replication initiation. Mol. Cell Biol. 30, 1382–1396 (2010).
Glatter, T., Wepf, A., Aebersold, R. & Gstaiger, M. An integrated workflow for charting the human interaction proteome: insights into the PP2A system. Mol. Syst. Biol. 5, 237 (2009).
Ying, S., Hamdy, F.C. & Helleday, T. Mre11-dependent degradation of stalled DNA replication forks is prevented by BRCA2 and PARP1. Cancer Res. 72, 2814–2821 (2012).
Sharma, S., Phatak, P., Stortchevoi, A., Jasin, M. & Larocque, J.R. RECQ1 plays a distinct role in cellular response to oxidative DNA damage. DNA Repair (Amst.) 11, 537–549 (2012).
Wang, Y., Li, H., Tang, Q., Maul, G.G. & Yuan, Y. Kaposi′s sarcoma-associated herpesvirus ori-Lyt-dependent DNA replication: involvement of host cellular factors. J. Virol. 82, 2867–2882 (2008).
Kleine, H. & Luscher, B. Learning how to read ADP-ribosylation. Cell 139, 17–19 (2009).
Schreiber, V. et al. Poly(ADP-ribose) polymerase-2 (PARP-2) is required for efficient base excision DNA repair in association with PARP-1 and XRCC1. J. Biol. Chem. 277, 23028–23036 (2002).
von Kobbe, C. et al. Poly(ADP-ribose) polymerase 1 regulates both the exonuclease and helicase activities of the Werner syndrome protein. Nucleic Acids Res. 32, 4003–4014 (2004).
Sharma, S. & Brosh, R.M. Jr. Human RECQ1 is a DNA damage responsive protein required for genotoxic stress resistance and suppression of sister chromatid exchanges. PLoS ONE 2, e1297 (2007).
Bugreev, D.V., Mazina, O.M. & Mazin, A.V. Rad54 protein promotes branch migration of Holliday junctions. Nature 442, 590–593 (2006).
Ferro, A.M. & Olivera, B.M. Poly(ADP-ribosylation) in vitro. Reaction parameters and enzyme mechanism. J. Biol. Chem. 257, 7808–7813 (1982).
Hanada, K. et al. The structure-specific endonuclease Mus81 contributes to replication restart by generating double-strand DNA breaks. Nat. Struct. Mol. Biol. 14, 1096–1104 (2007).
Lopes, M. Electron microscopy methods for studying in vivo DNA replication intermediates. Methods Mol. Biol. 521, 605–631 (2009).
Neelsen, K.J., Ray Chaudhuri, A., Follonier, C., Herrador, R. & Lopes, M. Visualization and interpretation of eukaryotic DNA replication intermediates by electron microscopy in vivo. Methods Mol. Biol. (in the press).
Mendoza-Maldonado, R. et al. The human RECQ1 helicase is highly expressed in glioblastoma and plays an important role in tumor cell proliferation. Mol. Cancer 10, 83 (2011).
Sharma, S. et al. RECQL, a member of the RecQ family of DNA helicases, suppresses chromosomal instability. Mol. Cell Biol. 27, 1784–1794 (2007).
Mao, F.J., Sidorova, J.M., Lauper, J.M., Emond, M.J. & Monnat, R.J. The human WRN and BLM RecQ helicases differentially regulate cell proliferation and survival after chemotherapeutic DNA damage. Cancer Res. 70, 6548–6555 (2010).
Langelier, M.F., Servent, K.M., Rogers, E.E. & Pascal, J.M. A third zinc-binding domain of human poly(ADP-ribose) polymerase-1 coordinates DNA-dependent enzyme activation. J. Biol. Chem. 283, 4105–4114 (2008).
Tao, Z., Gao, P., Hoffman, D.W. & Liu, H.W. Domain C of human poly(ADP-ribose) polymerase-1 is important for enzyme activity and contains a novel zinc-ribbon motif. Biochemistry 47, 5804–5813 (2008).
Lucic, B. et al. A prominent β-hairpin structure in the winged-helix domain of RECQ1 is required for DNA unwinding and oligomer formation. Nucleic Acids Res. 39, 1703–1717 (2011).
Ahel, D. et al. Poly(ADP-ribose)-dependent regulation of DNA repair by the chromatin remodeling enzyme ALC1. Science 325, 1240–1243 (2009).
Cui, S. et al. Analysis of the unwinding activity of the dimeric RECQ1 helicase in the presence of human replication protein A. Nucleic Acids Res. 32, 2158–2170 (2004).
Muzzolini, L. et al. Different quaternary structures of human RECQ1 are associated with its dual enzymatic activity. PLoS Biol. 5, e20 (2007).
Sidorova, J.M., Li, N., Schwartz, D.C., Folch, A. & Monnat, R.J. Jr. Microfluidic-assisted analysis of replicating DNA molecules. Nat. Protoc. 4, 849–861 (2009).
Acknowledgements
We are grateful to A. Mazin for sharing information regarding the substrate preparation. We thank P. Janscak (University of Zurich) and D. Orren (University of Kentucky College of Medicine) for providing aliquots of purified WRN and WRN-E84A proteins, respectively. We thank G. de Murcia (École Supérieure de Biotechnologie de Strasbourg) for providing the constructs for the production of the PARP1 fragment. We thank Y. Ayala for critical discussions and G. Triolo for help in recombinant protein production. We thank the Nano Research Facility of the School of Engineering and Applied Science at Washington University in St. Louis, which is part of the National Nanotechnology Infrastructure Network supported by the US National Science Foundation under grant no. ECS-0335765, for microfabrication and the use of clean-room facility. We also thank the Center for Microscopy and Image Analysis of the University of Zurich for technical assistance with EM. This work was supported by startup funding from the Doisy Department of Biochemistry and Molecular Biology at the Saint Louis University School of Medicine and the Saint Louis University Cancer Center and grants from the President's Research Fund of Saint Louis University and the Associazione Italiana per la Ricerca sul Cancro (AIRC10510) to A.V.; US National Institutes of Health grant CA77852 to R.J.M. Jr.; Swiss National Science Foundation grants PP0033-114922 and PP00P3-135292 to M.L.; and a contribution from Fonds zur Förderung des Akademischen Nachwuchses (FAN) of the Zürcher Universitätsverein (ZUNIV) to M.L. and A.R.C.
Author information
Authors and Affiliations
Contributions
M.B. conducted the immunoprecipitation, GST-pulldown, far-western and dot-blot experiments and the in vitro fork regression and restoration studies with the synthetic DNA substrates. A.R.C. conducted PFGE and EM analysis. S.T. conducted the single-molecule DNA replication assays. S. Gomathinayagam expressed the recombinant proteins and contributed to the in vitro fork regression and restoration assays. S.K. performed the immunofluorescence experiments and contributed to the cell-survival assays. M.V. conducted the single-molecule DNA replication assays with the BLM- and WRN-depleted cells. F.O. performed the protein complex purification experiments. T.G. contributed to the design of the proteomic experiments and performed MS analysis. S. Graziano performed the cell-survival assays. R.M.-M. contributed to the production of the GST-tagged fragments used in the GST-pulldown assays. F.M. contributed to the far-western analysis. B.L. produced the RECQ1 mutants and contributed to the optimization of protocols for RECQ1 expression. V.B. induced expression of the recombinant PARP1 protein. M.G. contributed to the design and supervision of the proteomic experiments. R.A. supervised the proteomic experiments. J.M.S. and R.J.M. Jr. contributed to the establishment of the single-molecule DNA replication assays in A.V.'s lab. R.J.M. Jr. assisted A.V. in finalizing the manuscript. M.L. planned, designed and supervised the PFGE and EM experiments and assisted A.V. in finalizing the manuscript. A.V. planned and supervised the project and wrote the manuscript.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary Text and Figures
Supplementary Figures 1–7, Supplementary Table 1 and Supplementary Note (PDF 4964 kb)
Rights and permissions
About this article
Cite this article
Berti, M., Ray Chaudhuri, A., Thangavel, S. et al. Human RECQ1 promotes restart of replication forks reversed by DNA topoisomerase I inhibition. Nat Struct Mol Biol 20, 347–354 (2013). https://doi.org/10.1038/nsmb.2501
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nsmb.2501
This article is cited by
-
FANCJ promotes PARP1 activity during DNA replication that is essential in BRCA1 deficient cells
Nature Communications (2024)
-
Clinical application of PARP inhibitors in ovarian cancer: from molecular mechanisms to the current status
Journal of Ovarian Research (2023)
-
Replication fork uncoupling causes nascent strand degradation and fork reversal
Nature Structural & Molecular Biology (2023)
-
Leveraging the replication stress response to optimize cancer therapy
Nature Reviews Cancer (2023)
-
C16orf72/HAPSTR1/TAPR1 functions with BRCA1/Senataxin to modulate replication-associated R-loops and confer resistance to PARP disruption
Nature Communications (2023)