Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Structure and function of long noncoding RNAs in epigenetic regulation

Abstract

Genomes of complex organisms encode an abundance and diversity of long noncoding RNAs (lncRNAs) that are expressed throughout the cell and fulfill a wide variety of regulatory roles at almost every stage of gene expression. These roles, which encompass sensory, guiding, scaffolding and allosteric capacities, derive from folded modular domains in lncRNAs. In this diverse functional repertoire, we focus on the well-characterized ability for lncRNAs to function as epigenetic modulators. Many lncRNAs bind to chromatin-modifying proteins and recruit their catalytic activity to specific sites in the genome, thereby modulating chromatin states and impacting gene expression. Considering this regulatory potential in combination with the abundance of lncRNAs suggests that lncRNAs may be part of a broad epigenetic regulatory network.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: The human genome encodes an abundance and diversity of lncRNAs.
Figure 2: Domain architecture of lncRNAs.

References

  1. Carninci, P. et al. The transcriptional landscape of the mammalian genome. Science 309, 1559–1563 (2005). One of the earliest analyses of large-scale cDNA sequencing, this work reveals the abundance of lncRNAs and complexity of transcriptional organization in the eukaryotic genome.

    CAS  PubMed  Google Scholar 

  2. Mattick, J.S. A new paradigm for developmental biology. J. Exp. Biol. 210, 1526–1547 (2007).

    PubMed  Google Scholar 

  3. Amaral, P.P., Clark, M.B., Gascoigne, D.K., Dinger, M.E. & Mattick, J.S. lncRNAdb: a reference database for long noncoding RNAs. Nucleic Acids Res. 39, D146–D151 (2011).

    CAS  PubMed  Google Scholar 

  4. Guttman, M. et al. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature 458, 223–227 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Kapranov, P. et al. RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science 316, 1484–1488 (2007).

    CAS  PubMed  Google Scholar 

  6. Dieci, G., Fiorino, G., Castelnuovo, M., Teichmann, M. & Pagano, A. The expanding RNA polymerase III transcriptome. Trends Genet. 23, 614–622 (2007).

    CAS  PubMed  Google Scholar 

  7. Yin, Q.F. et al. Long noncoding RNAs with snoRNA ends. Mol. Cell 48, 219–230 (2012).

    CAS  PubMed  Google Scholar 

  8. Dinger, M.E., Pang, K.C., Mercer, T.R. & Mattick, J.S. Differentiating protein-coding and noncoding RNA: challenges and ambiguities. PLOS Comput. Biol. 4, e1000176 (2008).

    PubMed  PubMed Central  Google Scholar 

  9. Lin, M.F., Jungreis, I. & Kellis, M. PhyloCSF: a comparative genomics method to distinguish protein coding and non-coding regions. Bioinformatics 27, i275–i282 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Galindo, M.I., Pueyo, J.I., Fouix, S., Bishop, S.A. & Couso, J.P. Peptides encoded by short ORFs control development and define a new eukaryotic gene family. PLoS Biol. 5, e106 (2007).

    PubMed  PubMed Central  Google Scholar 

  11. Ingolia, N.T., Lareau, L.F. & Weissman, J.S. Ribosome profiling of mouse embryonic stem cells reveals the complexity and dynamics of mammalian proteomes. Cell 147, 789–802 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Banfai, B. et al. Long noncoding RNAs are rarely translated in two human cell lines. Genome Res. 22, 1646–1657 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Dinger, M.E., Gascoigne, D.K. & Mattick, J.S. The evolution of RNAs with multiple functions. Biochimie 93, 2013–2018 (2011).

    CAS  PubMed  Google Scholar 

  14. Poliseno, L. et al. A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature 465, 1033–1038 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Carvunis, A.R. et al. Proto-genes and de novo gene birth. Nature 487, 370–374 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Zheng, D. et al. Pseudogenes in the ENCODE regions: consensus annotation, analysis of transcription, and evolution. Genome Res. 17, 839–851 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Duret, L., Chureau, C., Samain, S., Weissenbach, J. & Avner, P. The Xist RNA gene evolved in eutherians by pseudogenization of a protein-coding gene. Science 312, 1653–1655 (2006).

    CAS  PubMed  Google Scholar 

  18. Lee, J.T. The X as model for RNA's niche in epigenomic regulation. Cold Spring Harb. Perspect. Biol. 2, a003749 (2010).

    PubMed  PubMed Central  Google Scholar 

  19. Gerstein, M.B. et al. What is a gene, post-ENCODE? History and updated definition. Genome Res. 17, 669–681 (2007).

    CAS  PubMed  Google Scholar 

  20. Denoeud, F. et al. Prominent use of distal 5′ transcription start sites and discovery of a large number of additional exons in ENCODE regions. Genome Res. 17, 746–759 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Djebali, S., Davis, C.A., LaGarde, J. & Gingeras, T. Landscape of transcription in human cell lines. Nature 489, 101–108 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Mazumder, B., Seshadri, V. & Fox, P.L. Translational control by the 3′-UTR: the ends specify the means. Trends Biochem. Sci. 28, 91–98 (2003).

    CAS  PubMed  Google Scholar 

  23. Mercer, T.R. et al. Expression of distinct RNAs from 3′ untranslated regions. Nucleic Acids Res. 39, 2393–2403 (2011).

    CAS  PubMed  Google Scholar 

  24. Okazaki, Y. et al. Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs. Nature 420, 563–573 (2002).

    PubMed  Google Scholar 

  25. Rinn, J.L. et al. The transcriptional activity of human chromosome 22. Genes Dev. 17, 529–540 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Derrien, T. et al. The GENCODE v7 catalog of human long noncoding RNAs: Analysis of their gene structure, evolution, and expression. Genome Res. 22, 1775–1789 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Cabili, M.N. et al. Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev. 25, 1915–1927 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Mercer, T.R. et al. Targeted RNA sequencing reveals the deep complexity of the human transcriptome. Nat. Biotechnol. 30, 99–104 (2012).

    CAS  Google Scholar 

  29. Kapranov, P., Willingham, A.T. & Gingeras, T.R. Genome-wide transcription and the implications for genomic organization. Nat. Rev. Genet. 8, 413–423 (2007).

    CAS  PubMed  Google Scholar 

  30. Kapranov, P. et al. Examples of the complex architecture of the human transcriptome revealed by RACE and high-density tiling arrays. Genome Res. 15, 987–997 (2005). This systematic study reveals the complex organization of gene loci that is a common feature within the genome's modular architecture.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Katayama, S. et al. Antisense transcription in the mammalian transcriptome. Science 309, 1564–1566 (2005).

    PubMed  Google Scholar 

  32. Ohhata, T., Hoki, Y., Sasaki, H. & Sado, T. Crucial role of antisense transcription across the Xist promoter in Tsix-mediated Xist chromatin modification. Development 135, 227–235 (2008).

    CAS  PubMed  Google Scholar 

  33. Sun, B.K., Deaton, A.M. & Lee, J.T. A transient heterochromatic state in Xist preempts X inactivation choice without RNA stabilization. Mol. Cell 21, 617–628 (2006).

    CAS  PubMed  Google Scholar 

  34. Zhao, J., Sun, B.K., Erwin, J.A., Song, J.J. & Lee, J.T. Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome. Science 322, 750–756 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Sado, T., Okano, M., Li, E. & Sasaki, H. De novo DNA methylation is dispensable for the initiation and propagation of X chromosome inactivation. Development 131, 975–982 (2004).

    CAS  PubMed  Google Scholar 

  36. Ogawa, Y., Sun, B.K. & Lee, J.T. Intersection of the RNA interference and X-inactivation pathways. Science 320, 1336–1341 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Lee, J.T. Regulation of X-chromosome counting by Tsix and Xite sequences. Science 309, 768–771 (2005).

    CAS  PubMed  Google Scholar 

  38. Cantara, W.A. et al. The RNA Modification Database, RNAMDB: 2011 update. Nucleic Acids Res. 39, D195–D201 (2011).

    CAS  PubMed  Google Scholar 

  39. Helm, M. Post-transcriptional nucleotide modification and alternative folding of RNA. Nucleic Acids Res. 34, 721–733 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Kellner, S., Burhenne, J. & Helm, M. Detection of RNA modifications. RNA Biol. 7, 237–247 (2010).

    CAS  PubMed  Google Scholar 

  41. Squires, J.E. et al. Widespread occurrence of 5-methylcytosine in human coding and non-coding RNA. Nucleic Acids Res. 40, 5023–5033 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Jia, G. et al. N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat. Chem. Biol. 7, 885–887 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. He, C. Grand challenge commentary: RNA epigenetics? Nat. Chem. Biol. 6, 863–865 (2010).

    CAS  PubMed  Google Scholar 

  44. Cruz, J.A. & Westhof, E. The dynamic landscapes of RNA architecture. Cell 136, 604–609 (2009).

    CAS  PubMed  Google Scholar 

  45. Lescoute, A. & Westhof, E. The interaction networks of structured RNAs. Nucleic Acids Res. 34, 6587–6604 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Talkington, M.W., Siuzdak, G. & Williamson, J.R. An assembly landscape for the 30S ribosomal subunit. Nature 438, 628–632 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhang, X. et al. Maternally expressed gene 3 (MEG3) noncoding ribonucleic acid: isoform structure, expression, and functions. Endocrinology 151, 939–947 (2010).

    CAS  PubMed  Google Scholar 

  48. Steitz, T.A. A structural understanding of the dynamic ribosome machine. Nat. Rev. Mol. Cell Biol. 9, 242–253 (2008).

    CAS  PubMed  Google Scholar 

  49. Novikova, I.V., Hennelly, S.P. & Sanbonmatsu, K.Y. Structural architecture of the human long non-coding RNA, steroid receptor RNA activator. Nucleic Acids Res. 40, 5034–5051 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Underwood, J.G. et al. FragSeq: transcriptome-wide RNA structure probing using high-throughput sequencing. Nat. Methods 7, 995–1001 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Kertesz, M. et al. Genome-wide measurement of RNA secondary structure in yeast. Nature 467, 103–107 (2010).

    CAS  PubMed  Google Scholar 

  52. Liang, J.C., Bloom, R.J. & Smolke, C.D. Engineering biological systems with synthetic RNA molecules. Mol. Cell 43, 915–926 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Win, M.N. & Smolke, C.D. Higher-order cellular information processing with synthetic RNA devices. Science 322, 456–460 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Carrieri, C. et al. Long non-coding antisense RNA controls Uchl1 translation through an embedded SINEB2 repeat. Nature 491, 454–457 (2012).

    CAS  PubMed  Google Scholar 

  55. Cisse, I.I., Kim, H. & Ha, T. A rule of seven in Watson-Crick base-pairing of mismatched sequences. Nat. Struct. Mol. Biol. 19, 623–627 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Affymetrix ENCODE Transcriptome Project & Cold Spring Harbor Laboratory ENCODE Transcriptome Project. Post-transcriptional processing generates a diversity of 5′-modified long and short RNAs. Nature 457, 1028–1032 (2009).

  57. Wilusz, J.E., Freier, S.M. & Spector, D.L. 3′ end processing of a long nuclear-retained noncoding RNA yields a tRNA-like cytoplasmic RNA. Cell 135, 919–932 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Djupedal, I. & Ekwall, K. Epigenetics: heterochromatin meets RNAi. Cell Res. 19, 282–295 (2009).

    CAS  PubMed  Google Scholar 

  59. Talini, G., Branciamore, S. & Gallori, E. Ribozymes: flexible molecular devices at work. Biochimie 93, 1998–2005 (2011).

    CAS  PubMed  Google Scholar 

  60. Hogan, D.J., Riordan, D.P., Gerber, A.P., Herschlag, D. & Brown, P.O. Diverse RNA-binding proteins interact with functionally related sets of RNAs, suggesting an extensive regulatory system. PLoS Biol. 6, e255 (2008).

    PubMed  PubMed Central  Google Scholar 

  61. Lunde, B.M., Moore, C. & Varani, G. RNA-binding proteins: modular design for efficient function. Nat. Rev. Mol. Cell Biol. 8, 479–490 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Castello, A. et al. Insights into RNA biology from an atlas of mammalian mRNA-binding proteins. Cell 149, 1393–1406 (2012).

    CAS  PubMed  Google Scholar 

  63. Ciesla, J. Metabolic enzymes that bind RNA: yet another level of cellular regulatory network? Acta Biochim. Pol. 53, 11–32 (2006).

    CAS  PubMed  Google Scholar 

  64. Baltz, A.G. et al. The mRNA-bound proteome and its global occupancy profile on protein-coding transcripts. Mol. Cell 46, 674–690 (2012).

    CAS  PubMed  Google Scholar 

  65. Scheibe, M., Butter, F., Hafner, M., Tuschl, T. & Mann, M. Quantitative mass spectrometry and PAR-CLIP to identify RNA-protein interactions. Nucleic Acids Res. 40, 9897–9902 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Reiter, N.J., Chan, C.W. & Mondragon, A. Emerging structural themes in large RNA molecules. Curr. Opin. Struct. Biol. 21, 319–326 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Buske, F.A., Mattick, J.S. & Bailey, T.L. Potential in vivo roles of nucleic acid triple-helices. RNA Biol. 8, 427–439 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Aguilera, A. & Garcia-Muse, T. R loops: from transcription byproducts to threats to genome stability. Mol. Cell 46, 115–124 (2012).

    CAS  PubMed  Google Scholar 

  69. Schmitz, K.M., Mayer, C., Postepska, A. & Grummt, I. Interaction of noncoding RNA with the rDNA promoter mediates recruitment of DNMT3b and silencing of rRNA genes. Genes Dev. 24, 2264–2269 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Chu, C., Qu, K., Zhong, F.L., Artandi, S.E. & Chang, H.Y. Genomic maps of long noncoding RNA occupancy reveal principles of RNA-chromatin interactions. Mol. Cell 44, 667–678 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Jeon, Y. & Lee, J.T. YY1 tethers Xist RNA to the inactive X nucleation center. Cell 146, 119–133 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Ray, P.S. et al. A stress-responsive RNA switch regulates VEGFA expression. Nature 457, 915–919 (2009).

    CAS  PubMed  Google Scholar 

  73. Delebecque, C.J., Lindner, A.B., Silver, P.A. & Aldaye, F.A. Organization of intracellular reactions with rationally designed RNA assemblies. Science 333, 470–474 (2011).

    CAS  PubMed  Google Scholar 

  74. Yap, K.L. et al. Molecular interplay of the noncoding RNA ANRIL and methylated histone H3 lysine 27 by polycomb CBX7 in transcriptional silencing of INK4a. Mol. Cell 38, 662–674 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Guttman, M. et al. lincRNAs act in the circuitry controlling pluripotency and differentiation. Nature 477, 295–300 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Koziol, M.J. & Rinn, J.L. RNA traffic control of chromatin complexes. Curr. Opin. Genet. Dev. 20, 142–148 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Pandey, R.R. et al. Kcnq1ot1 antisense noncoding RNA mediates lineage-specific transcriptional silencing through chromatin-level regulation. Mol. Cell 32, 232–246 (2008).

    CAS  PubMed  Google Scholar 

  78. Tsai, M.C. et al. Long noncoding RNA as modular scaffold of histone modification complexes. Science 329, 689–693 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Plath, K. et al. Role of histone H3 lysine 27 methylation in X inactivation. Science 300, 131–135 (2003). This work shows the recruitment of the Eed–Ezh2 complex to mediate H3K27 methylation at the inactive X chromosome by Xist.

    CAS  PubMed  Google Scholar 

  80. Wutz, A., Rasmussen, T.P. & Jaenisch, R. Chromosomal silencing and localization are mediated by different domains of Xist RNA. Nat. Genet. 30, 167–174 (2002).

    CAS  PubMed  Google Scholar 

  81. Hasegawa, Y., Brockdorff, N., Kawano, S., Tsutui, K. & Nakagawa, S. The matrix protein hnRNP U is required for chromosomal localization of Xist RNA. Dev. Cell 19, 469–476 (2010).

    CAS  PubMed  Google Scholar 

  82. Grant, J. et al. Rsx is a metatherian RNA with Xist-like properties in X-chromosome inactivation. Nature 487, 254–258 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Gong, C. & Maquat, L.E. lncRNAs transactivate STAU1-mediated mRNA decay by duplexing with 3′ UTRs via Alu elements. Nature 470, 284–288 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Mariner, P.D. et al. Human Alu RNA is a modular transacting repressor of mRNA transcription during heat shock. Mol. Cell 29, 499–509 (2008).

    CAS  PubMed  Google Scholar 

  85. Khalil, A.M. et al. Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc. Natl. Acad. Sci. USA 106, 11667–11672 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Sanchez-Elsner, T., Gou, D., Kremmer, E. & Sauer, F. Noncoding RNAs of Trithorax response elements recruit Drosophila Ash1 to Ultrabithorax. Science 311, 1118–1123 (2006). A model for the local recruitment of the epigenetic regulator Ash1 by lncRNAs is proposed.

    CAS  PubMed  Google Scholar 

  87. Rinn, J.L. et al. Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 129, 1311–1323 (2007). This work is a demonstration of a lncRNA, HOTAIR, that targets Polycomb proteins in trans to the HOXD loci sites in the human genome.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Mohammad, F., Mondal, T. & Kanduri, C. Epigenetics of imprinted long noncoding RNAs. Epigenetics 4, 277–286 (2009).

    CAS  PubMed  Google Scholar 

  89. Nagano, T. et al. The Air noncoding RNA epigenetically silences transcription by targeting G9a to chromatin. Science 322, 1717–1720 (2008).

    CAS  PubMed  Google Scholar 

  90. Engstrom, P.G. et al. Complex Loci in human and mouse genomes. PLoS Genet. 2, e47 (2006).

    PubMed  PubMed Central  Google Scholar 

  91. Pinter, S.F. et al. Spreading of X chromosome inactivation via a hierarchy of defined Polycomb stations. Genome Res. 22, 1864–1876 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Wutz, A. Gene silencing in X-chromosome inactivation: advances in understanding facultative heterochromatin formation. Nat. Rev. Genet. 12, 542–553 (2011).

    CAS  PubMed  Google Scholar 

  93. Almouzni, G. & Probst, A.V. Heterochromatin maintenance and establishment: lessons from the mouse pericentromere. Nucleus 2, 332–338 (2011).

    PubMed  Google Scholar 

  94. Maison, C. et al. SUMOylation promotes de novo targeting of HP1alpha to pericentric heterochromatin. Nat. Genet. 43, 220–227 (2011).

    CAS  PubMed  Google Scholar 

  95. Wang, K.C. et al. A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. Nature 472, 120–124 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Tripathi, V. et al. The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Mol. Cell 39, 925–938 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Mao, Y.S., Sunwoo, H., Zhang, B. & Spector, D.L. Direct visualization of the co-transcriptional assembly of a nuclear body by noncoding RNAs. Nat. Cell Biol. 13, 95–101 (2011).

    CAS  PubMed  Google Scholar 

  98. Shevtsov, S.P. & Dundr, M. Nucleation of nuclear bodies by RNA. Nat. Cell Biol. 13, 167–173 (2011).

    CAS  PubMed  Google Scholar 

  99. Bantignies, F. et al. Polycomb-dependent regulatory contacts between distant Hox loci in Drosophila. Cell 144, 214–226 (2011).

    CAS  PubMed  Google Scholar 

  100. Lanzuolo, C., Roure, V., Dekker, J., Bantignies, F. & Orlando, V. Polycomb response elements mediate the formation of chromosome higher-order structures in the bithorax complex. Nat. Cell Biol. 9, 1167–1174 (2007).

    CAS  PubMed  Google Scholar 

  101. Yang, L. et al. ncRNA- and Pc2 methylation-dependent gene relocation between nuclear structures mediates gene activation programs. Cell 147, 773–788 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Barabasi, A.L. & Oltvai, Z.N. Network biology: understanding the cell′s functional organization. Nat. Rev. Genet. 5, 101–113 (2004).

    CAS  PubMed  Google Scholar 

  103. Mattick, J.S. The genetic signatures of noncoding RNAs. PLoS Genet. 5, e1000459 (2009).

    PubMed  PubMed Central  Google Scholar 

  104. Schorderet, P. & Duboule, D. Structural and functional differences in the long non-coding RNA hotair in mouse and human. PLoS Genet. 7, e1002071 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Zhang, B. et al. The lncRNA Malat1 is dispensable for mouse development but its transcription plays a cis-regulatory role in the adult. Cell Rep. 2, 111–123 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. On, T. et al. The evolutionary landscape of the chromatin modification machinery reveals lineage specific gains, expansions, and losses. Proteins 78, 2075–2089 (2010).

    CAS  PubMed  Google Scholar 

  107. Fog, C.K., Jensen, K.T. & Lund, A.H. Chromatin-modifying proteins in cancer. APMIS 115, 1060–1089 (2007).

    CAS  PubMed  Google Scholar 

  108. Kutter, C. et al. Rapid turnover of long noncoding RNAs and the evolution of gene expression. PLoS Genet. 8, e1002841 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Pollard, K.S. et al. An RNA gene expressed during cortical development evolved rapidly in humans. Nature 443, 167–172 (2006).

    CAS  PubMed  Google Scholar 

  110. Pollard, K.S. et al. Forces shaping the fastest evolving regions in the human genome. PLoS Genet. 2, e168 (2006).

    PubMed  PubMed Central  Google Scholar 

  111. Ferrada, E. & Wagner, A. A comparison of genotype-phenotype maps for RNA and proteins. Biophys. J. 102, 1916–1925 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Amaral, P.P. et al. Complex architecture and regulated expression of the Sox2ot locus during vertebrate development. RNA 15, 2013–2027 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Willingham, A.T. et al. A strategy for probing the function of noncoding RNAs finds a repressor of NFAT. Science 309, 1570–1573 (2005).

    CAS  PubMed  Google Scholar 

  114. Schuster, P., Fontana, W., Stadler, P.F. & Hofacker, I.L. From sequences to shapes and back: a case study in RNA secondary structures. Proc. Biol. Sci. 255, 279–284 (1994).

    CAS  PubMed  Google Scholar 

  115. Saks, M.E., Sampson, J.R. & Abelson, J. Evolution of a transfer RNA gene through a point mutation in the anticodon. Science 279, 1665–1670 (1998).

    CAS  PubMed  Google Scholar 

  116. Jorg, T., Martin, O.C. & Wagner, A. Neutral network sizes of biological RNA molecules can be computed and are not atypically small. BMC Bioinformatics 9, 464 (2008).

    PubMed  PubMed Central  Google Scholar 

  117. Yomo, T. et al. Properties of artificial proteins with random sequences. Ann. NY Acad. Sci. 864, 131–135 (1998).

    CAS  PubMed  Google Scholar 

  118. Schultes, E.A., Spasic, A., Mohanty, U. & Bartel, D.P. Compact and ordered collapse of randomly generated RNA sequences. Nat. Struct. Mol. Biol. 12, 1130–1136 (2005).

    CAS  PubMed  Google Scholar 

  119. Wagner, A. The role of robustness in phenotypic adaptation and innovation. Proc. Biol. Sci. 279, 1249–1258 (2012).

    PubMed  PubMed Central  Google Scholar 

  120. Hayden, E.J., Ferrada, E. & Wagner, A. Cryptic genetic variation promotes rapid evolutionary adaptation in an RNA enzyme. Nature 474, 92–95 (2011). This work is an empirical demonstration that variation in an RNA genotype network can drive rapid phenotypic adaptation.

    CAS  PubMed  Google Scholar 

  121. Pigliucci, M. Is evolvability evolvable? Nat. Rev. Genet. 9, 75–82 (2008).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the following funding sources: Australian National Health and Medical Research Council Australia Fellowship (631668 to J.S.M. and T.R.M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John S Mattick.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mercer, T., Mattick, J. Structure and function of long noncoding RNAs in epigenetic regulation. Nat Struct Mol Biol 20, 300–307 (2013). https://doi.org/10.1038/nsmb.2480

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2480

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing