Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Sequential primed kinases create a damage-responsive phosphodegron on Eco1

Abstract

Sister-chromatid cohesion is established during S phase when Eco1 acetylates cohesin. In budding yeast, Eco1 activity falls after S phase due to Cdk1-dependent phosphorylation, which triggers ubiquitination by SCFCdc4. We show here that Eco1 degradation requires the sequential actions of Cdk1 and two additional kinases, Cdc7–Dbf4 and the GSK-3 homolog Mck1. These kinases recognize motifs primed by previous phosphorylation, resulting in an ordered sequence of three phosphorylation events on Eco1. Only the latter two phosphorylation sites are spaced correctly to bind Cdc4, resulting in strict discrimination between phosphates added by Cdk1 and by Cdc7. Inhibition of Cdc7 by the DNA damage response prevents Eco1 destruction, allowing establishment of cohesion after S phase. This elaborate regulatory system, involving three independent kinases and stringent substrate selection by a ubiquitin ligase, enables robust control of cohesion establishment during normal growth and after stress.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Analysis of the contribution of individual Cdk1 sites to Eco1 degradation.
Figure 2: Mass spectrometry reveals non-Cdk1 phosphorylation of Eco1.
Figure 3: Cdc7–Dbf4 and Mck1 are necessary for full degradation of Eco1 and phosphorylate Eco1 peptides in vitro.
Figure 4: Cdc4 binding depends on precise spacing of phosphorylation sites in Eco1.
Figure 5: Correct phosphate spacing is essential for Eco1 turnover in the cell.
Figure 6: Cdc7–Dbf4 activity limits Eco1 degradation to late S phase.
Figure 7: Cdc7–Dbf4 inhibition allows damage-induced cohesion establishment.

Similar content being viewed by others

References

  1. Holt, L.J. et al. Global analysis of Cdk1 substrate phosphorylation sites provides insights into evolution. Science 325, 1682–1686 (2009).

    Article  CAS  Google Scholar 

  2. Ubersax, J.A. et al. Targets of the cyclin-dependent kinase Cdk1. Nature 425, 859–864 (2003).

    Article  CAS  Google Scholar 

  3. Petroski, M.D. & Deshaies, R.J. Function and regulation of cullin-RING ubiquitin ligases. Nat. Rev. Mol. Cell Biol. 6, 9–20 (2005).

    Article  CAS  Google Scholar 

  4. Welcker, M. & Clurman, B.E. FBW7 ubiquitin ligase: a tumour suppressor at the crossroads of cell division, growth and differentiation. Nat. Rev. Cancer 8, 83–93 (2008).

    Article  CAS  Google Scholar 

  5. Nash, P. et al. Multisite phosphorylation of a CDK inhibitor sets a threshold for the onset of DNA replication. Nature 414, 514–521 (2001).

    Article  CAS  Google Scholar 

  6. Hao, B., Oehlmann, S., Sowa, M.E., Harper, J.W. & Pavletich, N.P. Structure of a Fbw7-Skp1-Cyclin E Complex: Multisite-Phosphorylated Substrate Recognition by SCF Ubiquitin Ligases. Mol. Cell 26, 131–143 (2007).

    Article  CAS  Google Scholar 

  7. Bao, M.Z., Shock, T.R. & Madhani, H.D. Multisite phosphorylation of the Saccharomyces cerevisiae filamentous growth regulator Tec1 is required for its recognition by the E3 ubiquitin ligase adaptor Cdc4 and its subsequent destruction in vivo. Eukaryot. Cell 9, 31–36 (2010).

    Article  CAS  Google Scholar 

  8. Welcker, M. & Clurman, B.E. Fbw7/hCDC4 dimerization regulates its substrate interactions. Cell Div. 2, 7 (2007).

    Article  Google Scholar 

  9. Tang, X. et al. Suprafacial orientation of the SCFCdc4 dimer accommodates multiple geometries for substrate ubiquitination. Cell 129, 1165–1176 (2007).

    Article  CAS  Google Scholar 

  10. Lyons, N.A. & Morgan, D.O. Cdk1-dependent destruction of Eco1 prevents cohesion establishment after S phase. Mol. Cell 42, 378–389 (2011).

    Article  CAS  Google Scholar 

  11. Rolef Ben-Shahar, T. et al. Eco1-dependent cohesin acetylation during establishment of sister chromatid cohesion. Science 321, 563–566 (2008).

    Article  Google Scholar 

  12. Rowland, B.D. et al. Building sister chromatid cohesion: smc3 acetylation counteracts an antiestablishment activity. Mol. Cell 33, 763–774 (2009).

    Article  CAS  Google Scholar 

  13. Sutani, T., Kawaguchi, T., Kanno, R., Itoh, T. & Shirahige, K. Budding yeast Wpl1(Rad61)-Pds5 complex counteracts sister chromatid cohesion-establishing reaction. Curr. Biol. 19, 492–497 (2009).

    Article  CAS  Google Scholar 

  14. Unal, E. et al. A molecular determinant for the establishment of sister chromatid cohesion. Science 321, 566–569 (2008).

    Article  Google Scholar 

  15. Ström, L. et al. Postreplicative formation of cohesion is required for repair and induced by a single DNA break. Science 317, 242–245 (2007).

    Article  Google Scholar 

  16. Ström, L., Lindroos, H.B., Shirahige, K. & Sjogren, C. Postreplicative recruitment of cohesin to double-strand breaks is required for DNA repair. Mol. Cell 16, 1003–1015 (2004).

    Article  Google Scholar 

  17. Unal, E., Heidinger-Pauli, J.M. & Koshland, D. DNA double-strand breaks trigger genome-wide sister-chromatid cohesion through Eco1 (Ctf7). Science 317, 245–248 (2007).

    Article  Google Scholar 

  18. Sjögren, C. & Nasmyth, K. Sister chromatid cohesion is required for postreplicative double-strand break repair in Saccharomyces cerevisiae. Curr. Biol. 11, 991–995 (2001).

    Article  Google Scholar 

  19. Heidinger-Pauli, J.M., Unal, E., Guacci, V. & Koshland, D. The kleisin subunit of cohesin dictates damage-induced cohesion. Mol. Cell 31, 47–56 (2008).

    Article  CAS  Google Scholar 

  20. Heidinger-Pauli, J.M., Unal, E. & Koshland, D. Distinct targets of the Eco1 acetyltransferase modulate cohesion in S phase and in response to DNA damage. Mol. Cell 34, 311–321 (2009).

    Article  CAS  Google Scholar 

  21. Kinoshita, E., Kinoshita-Kikuta, E., Takiyama, K. & Koike, T. Phosphate-binding tag, a new tool to visualize phosphorylated proteins. Mol. Cell. Proteomics 5, 749–757 (2006).

    Article  CAS  Google Scholar 

  22. Cho, W.H., Lee, Y.J., Kong, S.I., Hurwitz, J. & Lee, J.K. CDC7 kinase phosphorylates serine residues adjacent to acidic amino acids in the minichromosome maintenance 2 protein. Proc. Natl. Acad. Sci. USA 103, 11521–11526 (2006).

    Article  CAS  Google Scholar 

  23. Masai, H. et al. Human Cdc7-related kinase complex. In vitro phosphorylation of MCM by concerted actions of Cdks and Cdc7 and that of a criticial threonine residue of Cdc7 bY Cdks. J. Biol. Chem. 275, 29042–29052 (2000).

    Article  CAS  Google Scholar 

  24. Mok, J. et al. Deciphering protein kinase specificity through large-scale analysis of yeast phosphorylation site motifs. Sci. Signal. 3, ra12 (2010).

    Article  Google Scholar 

  25. Randell, J.C. et al. Mec1 is one of multiple kinases that prime the Mcm2–7 helicase for phosphorylation by Cdc7. Mol. Cell 40, 353–363 (2010).

    Article  CAS  Google Scholar 

  26. Oshiro, G., Owens, J.C., Shellman, Y., Sclafani, R.A. & Li, J.J. Cell cycle control of Cdc7p kinase activity through regulation of Dbf4p stability. Mol. Cell. Biol. 19, 4888–4896 (1999).

    Article  CAS  Google Scholar 

  27. Sullivan, M., Holt, L. & Morgan, D.O. Cyclin-specific control of ribosomal DNA segregation. Mol. Cell. Biol. 28, 5328–5336 (2008).

    Article  CAS  Google Scholar 

  28. Labib, K. How do Cdc7 and cyclin-dependent kinases trigger the initiation of chromosome replication in eukaryotic cells? Genes Dev. 24, 1208–1219 (2010).

    Article  CAS  Google Scholar 

  29. Marston, A.L. Meiosis: DDK is not just for replication. Curr. Biol. 19, R74–R76 (2009).

    Article  CAS  Google Scholar 

  30. Jackson, A.L., Pahl, P.M., Harrison, K., Rosamond, J. & Sclafani, R.A. Cell cycle regulation of the yeast Cdc7 protein kinase by association with the Dbf4 protein. Mol. Cell. Biol. 13, 2899–2908 (1993).

    Article  CAS  Google Scholar 

  31. Doble, B.W. & Woodgett, J.R. GSK-3: tricks of the trade for a multi-tasking kinase. J. Cell Sci. 116, 1175–1186 (2003).

    Article  CAS  Google Scholar 

  32. Fiol, C.J., Mahrenholz, A.M., Wang, Y., Roeske, R.W. & Roach, P.J. Formation of protein kinase recognition sites by covalent modification of the substrate. Molecular mechanism for the synergistic action of casein kinase II and glycogen synthase kinase 3. J. Biol. Chem. 262, 14042–14048 (1987).

    CAS  Google Scholar 

  33. Xu, C., Kim, N.G. & Gumbiner, B.M. Regulation of protein stability by GSK3 mediated phosphorylation. Cell Cycle 8, 4032–4039 (2009).

    Article  CAS  Google Scholar 

  34. Kassir, Y., Rubin-Bejerano, I. & Mandel-Gutfreund, Y. The Saccharomyces cerevisiae GSK-3 beta homologs. Curr. Drug Targets 7, 1455–1465 (2006).

    Article  CAS  Google Scholar 

  35. Mizunuma, M., Hirata, D., Miyaoka, R. & Miyakawa, T. GSK-3 kinase Mck1 and calcineurin coordinately mediate Hsl1 down-regulation by Ca2+ in budding yeast. EMBO J. 20, 1074–1085 (2001).

    Article  CAS  Google Scholar 

  36. Kishi, T., Ikeda, A., Nagao, R. & Koyama, N. The SCFCdc4 ubiquitin ligase regulates calcineurin signaling through degradation of phosphorylated Rcn1, an inhibitor of calcineurin. Proc. Natl. Acad. Sci. USA 104, 17418–17423 (2007).

    Article  CAS  Google Scholar 

  37. Ikui, A.E., Rossio, V., Schroeder, L. & Yoshida, S. A yeast GSK-3 kinase Mck1 promotes Cdc6 degradation to inhibit DNA re-replication. PLoS Genet. 8, e1003099 (2012).

    Article  CAS  Google Scholar 

  38. Kõivomägi, M. et al. Cascades of multisite phosphorylation control Sic1 destruction at the onset of S phase. Nature 480, 128–131 (2011).

    Article  Google Scholar 

  39. Tang, X. et al. Composite low affinity interactions dictate recognition of the cyclin-dependent kinase inhibitor Sic1 by the SCFCdc4 ubiquitin ligase. Proc. Natl. Acad. Sci. USA 109, 3287–3292 (2012).

    Article  CAS  Google Scholar 

  40. Liu, Q. et al. SCFCdc4 enables mating type switching in yeast by cyclin-dependent kinase-mediated elimination of the Ash1 transcriptional repressor. Mol. Cell. Biol. 31, 584–598 (2011).

    Article  CAS  Google Scholar 

  41. Kihara, M. et al. Characterization of the yeast Cdc7p/Dbf4p complex purified from insect cells. Its protein kinase activity is regulated by Rad53p. J. Biol. Chem. 275, 35051–35062 (2000).

    Article  CAS  Google Scholar 

  42. Weinreich, M. & Stillman, B. Cdc7p-Dbf4p kinase binds to chromatin during S phase and is regulated by both the APC and the RAD53 checkpoint pathway. EMBO J. 18, 5334–5346 (1999).

    Article  CAS  Google Scholar 

  43. Lei, M. et al. Mcm2 is a target of regulation by Cdc7-Dbf4 during the initiation of DNA synthesis. Genes Dev. 11, 3365–3374 (1997).

    Article  CAS  Google Scholar 

  44. Gabrielse, C. et al. A Dbf4p BRCA1 C-terminal-like domain required for the response to replication fork arrest in budding yeast. Genetics 173, 541–555 (2006).

    Article  CAS  Google Scholar 

  45. Takeda, T. et al. Regulation of initiation of S phase, replication checkpoint signaling, and maintenance of mitotic chromosome structures during S phase by Hsk1 kinase in the fission yeast. Mol. Biol. Cell 12, 1257–1274 (2001).

    Article  CAS  Google Scholar 

  46. Lopez-Mosqueda, J. et al. Damage-induced phosphorylation of Sld3 is important to block late origin firing. Nature 467, 479–483 (2010).

    Article  CAS  Google Scholar 

  47. Zegerman, P. & Diffley, J.F. Checkpoint-dependent inhibition of DNA replication initiation by Sld3 and Dbf4 phosphorylation. Nature 467, 474–478 (2010).

    Article  CAS  Google Scholar 

  48. Mantiero, D., Mackenzie, A., Donaldson, A. & Zegerman, P. Limiting replication initiation factors execute the temporal programme of origin firing in budding yeast. EMBO J. 30, 4805–4814 (2011).

    Article  CAS  Google Scholar 

  49. Tanaka, S., Nakato, R., Katou, Y., Shirahige, K. & Araki, H. Origin association of Sld3, Sld7, and Cdc45 proteins is a key step for determination of origin-firing timing. Curr. Biol. 21, 2055–2063 (2011).

    Article  CAS  Google Scholar 

  50. Longtine, M.S. et al. Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast 14, 953–961 (1998).

    Article  CAS  Google Scholar 

  51. Wolters, D.A., Washburn, M.P. & Yates, J.R. III. An automated multidimensional protein identification technology for shotgun proteomics. Anal. Chem. 73, 5683–5690 (2001).

    Article  CAS  Google Scholar 

  52. Fonslow, B.R. et al. Single-step inline hydroxyapatite enrichment facilitates identification and quantitation of phosphopeptides from mass-limited proteomes with MudPIT. J. Proteome Res. 11, 2697–2709 (2012).

    Article  CAS  Google Scholar 

  53. Cociorva, D., Tabb, D.L. & Yates, J.R. Validation of tandem mass spectrometry database search results using DTASelect. Curr Protoc Bioinformatics Chapter 13, Unit 13 4 (2007).

  54. Tabb, D.L., McDonald, W.H. & Yates, J.R. III. DTASelect and Contrast: tools for assembling and comparing protein identifications from shotgun proteomics. J. Proteome Res. 1, 21–26 (2002).

    Article  CAS  Google Scholar 

  55. Schroeder, M.J., Shabanowitz, J., Schwartz, J.C., Hunt, D.F. & Coon, J.J. A neutral loss activation method for improved phosphopeptide sequence analysis by quadrupole ion trap mass spectrometry. Anal. Chem. 76, 3590–3598 (2004).

    Article  CAS  Google Scholar 

  56. Breci, L.A., Tabb, D.L., Yates, J.R. III & Wysocki, V.H. Cleavage N-terminal to proline: analysis of a database of peptide tandem mass spectra. Anal. Chem. 75, 1963–1971 (2003).

    Article  CAS  Google Scholar 

  57. Courcelles, M., Bridon, G., Lemieux, S. & Thibault, P. Occurrence and detection of phosphopeptide isomers in large-scale phosphoproteomics experiments. J. Proteome Res. 11, 3753–3765 (2012).

    Article  CAS  Google Scholar 

  58. Loog, M. & Morgan, D.O. Cyclin specificity in the phosphorylation of cyclin-dependent kinase substrates. Nature 434, 104–108 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Bell (Massachusetts Institute of Technology, Cambridge, Massachusetts, USA), D. Toczyski (University of California, San Francisco, California, USA), H. Madhani (University of California, San Francisco, California, USA) and K. Shokat (University of California, San Francisco, California, USA) for strains and reagents, M. Loog for advice with kinase assays, A. Ikui for discussion of unpublished results, J. Wohlschlegel for advice with mass spectrometry, J. Mugridge for assistance with fluorescence anisotropy and E. Edenberg and S. Foster for critical review of the manuscript. This work was supported by funding from the US National Institute of General Medical Sciences (R01-GM069901 to D.O.M. and P41-GM103533 to J.R.Y.) and the National Center for Research Resources (P41-RR011823 to J.R.Y.).

Author information

Authors and Affiliations

Authors

Contributions

N.A.L. and D.O.M. conceived the experiments, N.A.L. conducted the biological and biochemical experiments, B.R.F. performed mass spectrometry, and B.R.F. and J.K.D. analyzed mass spectra under the guidance of J.R.Y. N.A.L. and D.O.M. wrote the manuscript.

Corresponding author

Correspondence to David O Morgan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1 and 2 and Supplementary Tables 1 and 2 (PDF 449 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lyons, N., Fonslow, B., Diedrich, J. et al. Sequential primed kinases create a damage-responsive phosphodegron on Eco1. Nat Struct Mol Biol 20, 194–201 (2013). https://doi.org/10.1038/nsmb.2478

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2478

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing