Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Architecture of the major component of the type III secretion system export apparatus

Abstract

Type III secretion systems (T3SSs) are bacterial membrane–embedded nanomachines designed to export specifically targeted proteins from the bacterial cytoplasm. Secretion through T3SS is governed by a subset of inner membrane proteins termed the 'export apparatus'. We show that a key member of the Shigella flexneri export apparatus, MxiA, assembles into a ring essential for secretion in vivo. The ring-forming interfaces are well-conserved in both nonflagellar and flagellar homologs, implying that the ring is an evolutionarily conserved feature in these systems. Electron cryo-tomography revealed a T3SS-associated cytoplasmic torus of size and shape corresponding to those of the MxiA ring aligned to the secretion channel located between the secretion pore and the ATPase complex. This defines the molecular architecture of the dominant component of the export apparatus and allows us to propose a model for the molecular mechanisms controlling secretion.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: MxiAC crystallized as a nonameric ring.
Figure 2: In vitro and in vivo analysis of the MxiA ring.
Figure 3: Altering the inner and outer surfaces of the MxiA ring.
Figure 4: MxiAC surface conservation.
Figure 5: Model for MxiA architecture in the T3SS.
Figure 6: Mechanistic model of T3SS secretion.

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Cornelis, G.R. The type III secretion injectisome, a complex nanomachine for intracellular 'toxin' delivery. Biol. Chem. 391, 745–751 (2010).

    CAS  Article  Google Scholar 

  2. Patel, J.C. & Galan, J.E. Manipulation of the host actin cytoskeleton by Salmonella–all in the name of entry. Curr. Opin. Microbiol. 8, 10–15 (2005).

    CAS  Article  Google Scholar 

  3. Blocker, A.J. et al. What's the point of the type III secretion system needle? Proc. Natl. Acad. Sci. USA 105, 6507–6513 (2008).

    CAS  Article  Google Scholar 

  4. Erhardt, M., Namba, K. & Hughes, K.T. Bacterial nanomachines: the flagellum and type III injectisome. Cold Spring Harb. Perspect. Biol. 2, a000299 (2010).

    CAS  Article  Google Scholar 

  5. Marlovits, T.C. & Stebbins, C.E. Type III secretion systems shape up as they ship out. Curr. Opin. Microbiol. 13, 47–52 (2010).

    CAS  Article  Google Scholar 

  6. Deane, J.E., Abrusci, P., Johnson, S. & Lea, S.M. Timing is everything: the regulation of type III secretion. Cell. Mol. Life Sci. 67, 1065–1075 (2010).

    CAS  Article  Google Scholar 

  7. Diepold, A., Wiesand, U. & Cornelis, G.R. The assembly of the export apparatus (YscR,S,T,U,V) of the Yersinia type III secretion apparatus occurs independently of other structural components and involves the formation of an YscV oligomer. Mol. Microbiol. 82, 502–514 (2011).

    Article  Google Scholar 

  8. Wagner, S. et al. Organization and coordinated assembly of the type III secretion export apparatus. Proc. Natl. Acad. Sci. USA 107, 17745–17750 (2010).

    CAS  Article  Google Scholar 

  9. Li, H. & Sourjik, V. Assembly and stability of flagellar motor in Escherichia coli. Mol. Microbiol. 80, 886–899 (2011).

    CAS  Article  Google Scholar 

  10. Minamino, T., Imada, K. & Namba, K. Mechanisms of type III protein export for bacterial flagellar assembly. Mol. Biosyst. 4, 1105–1115 (2008).

    CAS  Article  Google Scholar 

  11. Minamino, T., Imada, K. & Namba, K. Molecular motors of the bacterial flagella. Curr. Opin. Struct. Biol. 18, 693–701 (2008).

    CAS  Article  Google Scholar 

  12. Diepold, A. et al. Deciphering the assembly of the Yersinia type III secretion injectisome. EMBO J. 29, 1928–1940 (2010).

    CAS  Article  Google Scholar 

  13. Zhu, K., Gonzalez-Pedrajo, B. & Macnab, R.M. Interactions among membrane and soluble components of the flagellar export apparatus of Salmonella. Biochemistry 41, 9516–9524 (2002).

    CAS  Article  Google Scholar 

  14. McMurry, J.L., Van Arnam, J.S., Kihara, M. & Macnab, R.M. Analysis of the cytoplasmic domains of Salmonella FlhA and interactions with components of the flagellar export machinery. J. Bacteriol. 186, 7586–7592 (2004).

    CAS  Article  Google Scholar 

  15. Bange, G. et al. FlhA provides the adaptor for coordinated delivery of late flagella building blocks to the type III secretion system. Proc. Natl. Acad. Sci. USA 107, 11295–11300 (2010).

    CAS  Article  Google Scholar 

  16. Minamino, T. et al. Interaction of a bacterial flagellar chaperone FlgN with FlhA is required for efficient export of its cognate substrates. Mol. Microbiol. 83, 775–788 (2012).

    CAS  Article  Google Scholar 

  17. Worrall, L.J., Vuckovic, M. & Strynadka, N.C. Crystal structure of the C-terminal domain of the Salmonella type III secretion system export apparatus protein InvA. Prot. Sci. 19, 1091–1096 (2010).

    CAS  Article  Google Scholar 

  18. Saijo-Hamano, Y. et al. Structure of the cytoplasmic domain of FlhA and implication for flagellar type III protein export. Mol. Microbiol. 76, 260–268 (2010).

    CAS  Article  Google Scholar 

  19. Moore, S.A. & Jia, Y. Structure of the cytoplasmic domain of the flagellar secretion apparatus component FlhA from Helicobacter pylori. J. Biol. Chem. 285, 21060–21069 (2010).

    CAS  Article  Google Scholar 

  20. Lilic, M., Quezada, C.M. & Stebbins, C.E. A conserved domain in type III secretion links the cytoplasmic domain of InvA to elements of the basal body. Acta Crystallogr. D Biol. Crystallogr. 66, 709–713 (2010).

    CAS  Article  Google Scholar 

  21. Andrews, G.P. & Maurelli, A.T. mxiA of Shigella flexneri 2a, which facilitates export of invasion plasmid antigens, encodes a homolog of the low-calcium-response protein, LcrD, of Yersinia pestis. Infect. Immun. 60, 3287–3295 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Ashida, H. et al. Shigella deploy multiple countermeasures against host innate immune responses. Curr. Opin. Microbiol. 14, 16–23 (2011).

    CAS  Article  Google Scholar 

  23. Spreter, T. et al. A conserved structural motif mediates formation of the periplasmic rings in the type III secretion system. Nat. Struct. Mol. Biol. 16, 468–476 (2009).

    CAS  Article  Google Scholar 

  24. Worrall, L.J., Lameignere, E. & Strynadka, N.C. Structural overview of the bacterial injectisome. Curr. Opin. Microbiol. 14, 3–8 (2011).

    CAS  Article  Google Scholar 

  25. Yip, C.K. et al. Structural characterization of the molecular platform for type III secretion system assembly. Nature 435, 702–707 (2005).

    CAS  Article  Google Scholar 

  26. Sanowar, S. et al. Interactions of the transmembrane polymeric rings of the Salmonella enterica serovar Typhimurium type III secretion system. mBio 1, e00158-10 (2010).

    Article  Google Scholar 

  27. Lee, L.K., Ginsburg, M.A., Crovace, C., Donohoe, M. & Stock, D. Structure of the torque ring of the flagellar motor and the molecular basis for rotational switching. Nature 466, 996–1000 (2010).

    CAS  Article  Google Scholar 

  28. Schraidt, O. & Marlovits, T.C. Three-dimensional model of Salmonella's needle complex at subnanometer resolution. Science 331, 1192–1195 (2011).

    CAS  Article  Google Scholar 

  29. Hodgkinson, J.L. et al. Three-dimensional reconstruction of the Shigella T3SS transmembrane regions reveals 12-fold symmetry and novel features throughout. Nat. Struct. Mol. Biol. 16, 477–485 (2009).

    CAS  Article  Google Scholar 

  30. Goodsell, D.S. & Olson, A.J. Structural symmetry and protein function. Annu. Rev. Biophys. Biomol. Struct. 29, 105–153 (2000).

    CAS  Article  Google Scholar 

  31. Thomas, D.R., Francis, N.R., Xu, C. & DeRosier, D.J. The three-dimensional structure of the flagellar rotor from a clockwise-locked mutant of Salmonella enterica serovar Typhimurium. J. Bacteriol. 188, 7039–7048 (2006).

    CAS  Article  Google Scholar 

  32. Chen, S. et al. Structural diversity of bacterial flagellar motors. EMBO J. 30, 2972–2981 (2011).

    CAS  Article  Google Scholar 

  33. Liu, J. et al. Intact flagellar motor of Borrelia burgdorferi revealed by cryo-electron tomography: evidence for stator ring curvature and rotor/C-ring assembly flexion. J. Bacteriol. 191, 5026–5036 (2009).

    CAS  Article  Google Scholar 

  34. Minamino, T. et al. Roles of the extreme N-terminal region of FliH for efficient localization of the FliH-FliI complex to the bacterial flagellar type III export apparatus. Mol. Microbiol. 74, 1471–1483 (2009).

    CAS  Article  Google Scholar 

  35. Ibuki, T. et al. Common architecture of the flagellar type III protein export apparatus and F- and V-type ATPases. Nat. Struct. Mol. Biol. 18, 277–282 (2011).

    CAS  Article  Google Scholar 

  36. Pallen, M.J., Bailey, C.M. & Beatson, S.A. Evolutionary links between FliH/YscL-like proteins from bacterial type III secretion systems and second-stalk components of the FoF1 and vacuolar ATPases. Prot. Sci. 15, 935–941 (2006).

    CAS  Article  Google Scholar 

  37. Imada, K., Minamino, T., Tahara, A. & Namba, K. Structural similarity between the flagellar type III ATPase FliI and F1-ATPase subunits. Proc. Natl. Acad. Sci. USA 104, 485–490 (2007).

    CAS  Article  Google Scholar 

  38. Zarivach, R., Vuckovic, M., Deng, W., Finlay, B.B. & Strynadka, N.C. Structural analysis of a prototypical ATPase from the type III secretion system. Nat. Struct. Mol. Biol. 14, 131–137 (2007).

    CAS  Article  Google Scholar 

  39. Minamino, T., Morimoto, Y.V., Hara, N. & Namba, K. An energy transduction mechanism used in bacterial flagellar type III protein export. Nature Commun. 2, 475 (2011).

    Article  Google Scholar 

  40. Paul, K., Erhardt, M., Hirano, T., Blair, D.F. & Hughes, K.T. Energy source of flagellar type III secretion. Nature 451, 489–492 (2008).

    CAS  Article  Google Scholar 

  41. Minamino, T. & Namba, K. Distinct roles of the FliI ATPase and proton motive force in bacterial flagellar protein export. Nature 451, 485–488 (2008).

    CAS  Article  Google Scholar 

  42. Wilharm, G. et al. Yersinia enterocolitica type III secretion depends on the proton motive force but not on the flagellar motor components MotA and MotB. Infect. Immun. 72, 4004–4009 (2004).

    CAS  Article  Google Scholar 

  43. Galperin, M., Dibrov, P.A. & Glagolev, A.N. delta mu H+ is required for flagellar growth in Escherichia coli. FEBS Lett. 143, 319–322 (1982).

    CAS  Article  Google Scholar 

  44. Hara, N., Namba, K. & Minamino, T. Genetic Characterization of Conserved Charged Residues in the Bacterial Flagellar Type III Export Protein FlhA. PLoS ONE 6, e22417 (2011).

    CAS  Article  Google Scholar 

  45. Minamino, T., Kinoshita, M., Imada, K. & Namba, K. Interaction between FliI ATPase and a flagellar chaperone FliT during bacterial flagellar protein export. Mol. Microbiol. 83, 168–178 (2012).

    CAS  Article  Google Scholar 

  46. Akeda, Y. & Galan, J.E. Chaperone release and unfolding of substrates in type III secretion. Nature 437, 911–915 (2005).

    CAS  Article  Google Scholar 

  47. Thomas, J., Stafford, G.P. & Hughes, C. Docking of cytosolic chaperone-substrate complexes at the membrane ATPase during flagellar type III protein export. Proc. Natl. Acad. Sci. USA 101, 3945–3950 (2004).

    CAS  Article  Google Scholar 

  48. Berg, H.C. The rotary motor of bacterial flagella. Annu. Rev. Biochem. 72, 19–54 (2003).

    CAS  Article  Google Scholar 

  49. Murphy, G.E., Leadbetter, J.R. & Jensen, G.J. In situ structure of the complete Treponema primitia flagellar motor. Nature 442, 1062–1064 (2006).

    CAS  Article  Google Scholar 

  50. Blocker, A. et al. Structure and composition of the Shigella flexneri “needle complex”, a part of its type III secreton. Mol. Microbiol. 39, 652–663 (2001).

    CAS  Article  Google Scholar 

  51. Wolf, S., Freier, E., Potschies, M., Hofmann, E. & Gerwert, K. Directional proton transfer in membrane proteins achieved through protonated protein-bound water molecules: a proton diode. Angew. Chem. Int. Ed. Engl. 49, 6889–6893 (2010).

    CAS  Article  Google Scholar 

  52. Miroux, B. & Walker, J.E. Over-production of proteins in Escherichia coli: mutant hosts that allow synthesis of some membrane proteins and globular proteins at high levels. J. Mol. Biol. 260, 289–298 (1996).

    CAS  Article  Google Scholar 

  53. Solano, C. et al. Genetic reductionist approach for dissecting individual roles of GGDEF proteins within the c-di-GMP signaling network in Salmonella. Proc. Natl. Acad. Sci. USA 106, 7997–8002 (2009).

    CAS  Article  Google Scholar 

  54. Hendrixson, D.R. & DiRita, V.J. Transcription of sigma54-dependent but not sigma28-dependent flagellar genes in Campylobacter jejuni is associated with formation of the flagellar secretory apparatus. Mol. Microbiol. 50, 687–702 (2003).

    CAS  Article  Google Scholar 

  55. Kenjale, R. et al. The needle component of the type III secreton of Shigella regulates the activity of the secretion apparatus. J. Biol. Chem. 280, 42929–42937 (2005).

    CAS  Article  Google Scholar 

  56. Marteyn, B. et al. Modulation of Shigella virulence in response to available oxygen in vivo. Nature 465, 355–358 (2010).

    CAS  Article  Google Scholar 

  57. Rayment, I. Reductive alkylation of lysine residues to alter crystallization properties of proteins. Methods Enzymol. 276, 171–179 (1997).

    CAS  Article  Google Scholar 

  58. Winter, G. xia2: an expert system for macromolecular crystallography data reduction. J. Appl. Crystallogr. 43, 186–190 (2010).

    CAS  Article  Google Scholar 

  59. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50, 760–763 (1994).

  60. Emsley, P., Lohkamp, B., Scott, W.G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).

    CAS  Article  Google Scholar 

  61. Blanc, E. et al. Refinement of severely incomplete structures with maximum likelihood in BUSTER-TNT. Acta Crystallogr. D Biol. Crystallogr. 60, 2210–2221 (2004).

    CAS  Article  Google Scholar 

  62. Agulleiro, J.I. & Fernandez, J.J. Fast tomographic reconstruction on multicore computers. Bioinformatics 27, 582–583 (2011).

    CAS  Article  Google Scholar 

  63. Nicastro, D. et al. The molecular architecture of axonemes revealed by cryoelectron tomography. Science 313, 944–948 (2006).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank N.C. Strynadka for access to InvA coordinates ahead of publication, P. Sansonetti (Institute Pasteur, Paris) for providing the polyclonal antibodies to Ipa proteins, I. Lasa (Universidad Pública de Navarra, Pamplona) for the pKO3blue plasmid, L. De Colibus, C. King and members of the Lea group for general assistance, the staff of the protein crystallography beamlines at the European Synchrotron Radiation Source, Grenoble (France) and DIAMOND facility, Didcot (UK) for assistance in data collection, and S.K. Mazmanian for use of the microaerobic chamber. P.A. is funded by grant 083599/Z/07/Z and J.E.D. by grant WT083599MA, both from the Wellcome Trust to S.M.L.; S.J. is funded by grant G0900888 from the UK Medical Research Council to S.M.L. and C.M.T.; P.R. is funded by the Oxford Martin School Vaccine Design Institute of which S.M.L. is codirector. M.V.-I. is funded by FP7 Marie Curie EIMID-IAPP-217768 grant. M.B. and G.J.J. were supported by the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Contributions

J.E.D., S.J. and S.M.L. initiated the project, which P.A. later joined; S.M.L. and C.M.T. supervised the project. M.E.F. and J.E.D. designed the MxiAC expression vector and did protein expression and stability trials. P.A. performed the large-scale purification, methylation, crosslinking and SPR of MxiAC and its mutants. S.J. performed the MALS experiments. P.A. designed the 'export apparatus' co-expression vectors and purified the recombinant complex. P.A. crystallized MxiAC and optimized crystals for data collection, and S.M.L. soaked and handled crystals for data collection. P.A., P.R. and S.M.L. contributed to the data collection, structure determination and model building. C.M.T. and M.V.-I. designed and performed the complementation and invasion assays in S. flexneri. D.R.H. created the C. jejuni strains, and M.D.B. and G.J.J. designed and performed cryo-EM tomography. P.A., S.J. and S.M.L. analyzed data and wrote the manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to Susan M Lea.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 and Supplementary Tables 1–3 (PDF 3013 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Abrusci, P., Vergara-Irigaray, M., Johnson, S. et al. Architecture of the major component of the type III secretion system export apparatus. Nat Struct Mol Biol 20, 99–104 (2013). https://doi.org/10.1038/nsmb.2452

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2452

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing