Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural characterization of a eukaryotic chaperone—the ribosome-associated complex

Abstract

Ribosome-associated chaperones act in early folding events during protein synthesis. Structural information is available for prokaryotic chaperones (such as trigger factor), but structural understanding of these processes in eukaryotes lags far behind. Here we present structural analyses of the eukaryotic ribosome-associated complex (RAC) from Saccharomyces cerevisiae and Chaetomium thermophilum, consisting of heat-shock protein 70 (Hsp70) Ssz1 and the Hsp40 Zuo1. RAC is an elongated complex that crouches over the ribosomal tunnel exit and seems to be stabilized in a distinct conformation by expansion segment ES27. A unique α-helical domain in Zuo1 mediates ribosome interaction of RAC near the ribosomal proteins L22e and L31e and ribosomal RNA helix H59. The crystal structure of the Ssz1 ATPase domain bound to ATP-Mg2+ explains its catalytic inactivity and suggests that Ssz1 may act before the RAC-associated chaperone Ssb. Our study offers insights into the interplay between RAC, the ER membrane–integrated Hsp40-type protein ERj1 and the signal-recognition particle.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structural analyses of RAC.
Figure 2: RAC interaction with the 80S ribosome.
Figure 3: ES27 might contact RAC at the ribosome.
Figure 4: RAC function at the ribosomal tunnel exit.

Similar content being viewed by others

Accession codes

Primary accessions

Electron Microscopy Data Bank

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Preissler, S. & Deuerling, E. Ribosome-associated chaperones as key players in proteostasis. Trends Biochem. Sci. 37, 274–283 (2012).

    Article  CAS  Google Scholar 

  2. Kramer, G., Boehringer, D., Ban, N. & Bukau, B. The ribosome as a platform for co-translational processing, folding and targeting of newly synthesized proteins. Nat. Struct. Mol. Biol. 16, 589–597 (2009).

    Article  CAS  Google Scholar 

  3. Lowther, W.T. & Matthews, B.W. Structure and function of the methionine aminopeptidases. Biochim. Biophys. Acta 1477, 157–167 (2000).

    Article  CAS  Google Scholar 

  4. Polevoda, B. & Sherman, F. Composition and function of the eukaryotic N-terminal acetyltransferase subunits. Biochem. Biophys. Res. Commun. 308, 1–11 (2003).

    Article  CAS  Google Scholar 

  5. Grudnik, P., Bange, G. & Sinning, I. Protein targeting by the signal recognition particle. Biol. Chem. 390, 775–782 (2009).

    Article  CAS  Google Scholar 

  6. Cross, B.C., Sinning, I., Luirink, J. & High, S. Delivering proteins for export from the cytosol. Nat. Rev. Mol. Cell Biol. 10, 255–264 (2009).

    Article  CAS  Google Scholar 

  7. Gautschi, M. et al. RAC, a stable ribosome-associated complex in yeast formed by the DnaK-DnaJ homologs Ssz1p and zuotin. Proc. Natl. Acad. Sci. USA 98, 3762–3767 (2001).

    Article  CAS  Google Scholar 

  8. Hartl, F.U. & Hayer-Hartl, M. Converging concepts of protein folding in vitro and in vivo. Nat. Struct. Mol. Biol. 16, 574–581 (2009).

    Article  CAS  Google Scholar 

  9. Bukau, B., Weissman, J. & Horwich, A. Molecular chaperones and protein quality control. Cell 125, 443–451 (2006).

    Article  CAS  Google Scholar 

  10. Kampinga, H.H. & Craig, E.A. The HSP70 chaperone machinery: J proteins as drivers of functional specificity. Nat. Rev. Mol. Cell Biol. 11, 579–592 (2010).

    Article  CAS  Google Scholar 

  11. Gautschi, M., Mun, A., Ross, S. & Rospert, S. A functional chaperone triad on the yeast ribosome. Proc. Natl. Acad. Sci. USA 99, 4209–4214 (2002).

    Article  CAS  Google Scholar 

  12. Otto, H. et al. The chaperones MPP11 and Hsp70L1 form the mammalian ribosome-associated complex. Proc. Natl. Acad. Sci. USA 102, 10064–10069 (2005).

    Article  CAS  Google Scholar 

  13. Huang, P., Gautschi, M., Walter, W., Rospert, S. & Craig, E.A. The Hsp70 Ssz1 modulates the function of the ribosome-associated J-protein Zuo1. Nat. Struct. Mol. Biol. 12, 497–504 (2005).

    Article  CAS  Google Scholar 

  14. Yan, W. et al. Zuotin, a ribosome-associated DnaJ molecular chaperone. EMBO J. 17, 4809–4817 (1998).

    Article  CAS  Google Scholar 

  15. Koplin, A. et al. A dual function for chaperones SSB-RAC and the NAC nascent polypeptide–associated complex on ribosomes. J. Cell Biol. 189, 57–68 (2010).

    Article  CAS  Google Scholar 

  16. Albanèse, V., Reissmann, S. & Frydman, J. A ribosome-anchored chaperone network that facilitates eukaryotic ribosome biogenesis. J. Cell Biol. 189, 69–81 (2010).

    Article  Google Scholar 

  17. Karbstein, K. Chaperoning ribosome assembly. J. Cell Biol. 189, 11–12 (2010).

    Article  CAS  Google Scholar 

  18. Amlacher, S. et al. Insight into structure and assembly of the nuclear pore complex by utilizing the genome of a eukaryotic thermophile. Cell 146, 277–289 (2011).

    Article  CAS  Google Scholar 

  19. Fiaux, J. et al. Structural analysis of the ribosome-associated complex (RAC) reveals an unusual Hsp70/Hsp40 interaction. J. Biol. Chem. 285, 3227–3234 (2010).

    Article  CAS  Google Scholar 

  20. Holm, L. & Sander, C. Dali: a network tool for protein structure comparison. Trends Biochem. Sci. 20, 478–480 (1995).

    Article  CAS  Google Scholar 

  21. Mourão, A., Varrot, A., Mackereth, C.D., Cusack, S. & Sattler, M. Structure and RNA recognition by the snRNA and snoRNA transport factor PHAX. RNA 16, 1205–1216 (2010).

    Article  Google Scholar 

  22. Peisker, K. et al. Ribosome-associated complex binds to ribosomes in close proximity of Rpl31 at the exit of the polypeptide tunnel in yeast. Mol. Biol. Cell 19, 5279–5288 (2008).

    Article  CAS  Google Scholar 

  23. O'Brien, M.C., Flaherty, K.M. & McKay, D.B. Lysine 71 of the chaperone protein Hsc70 Is essential for ATP hydrolysis. J. Biol. Chem. 271, 15874–15878 (1996).

    Article  CAS  Google Scholar 

  24. Sousa, M.C. & McKay, D.B. The hydroxyl of threonine 13 of the bovine 70-kDa heat shock cognate protein is essential for transducing the ATP-induced conformational change. Biochemistry 37, 15392–15399 (1998).

    Article  CAS  Google Scholar 

  25. Johnson, E.R. & McKay, D.B. Mapping the role of active site residues for transducing an ATP-induced conformational change in the bovine 70-kDa heat shock cognate protein. Biochemistry 38, 10823–10830 (1999).

    Article  CAS  Google Scholar 

  26. Beckmann, R. et al. Architecture of the protein-conducting channel associated with the translating 80S ribosome. Cell 107, 361–372 (2001).

    Article  CAS  Google Scholar 

  27. Nilsson, J., Sengupta, J., Gursky, R., Nissen, P. & Frank, J. Comparison of fungal 80S ribosomes by cryo-EM reveals diversity in structure and conformation of rRNA expansion segments. J. Mol. Biol. 369, 429–438 (2007).

    Article  CAS  Google Scholar 

  28. Armache, J.P. et al. Cryo-EM structure and rRNA model of a translating eukaryotic 80S ribosome at 5.5-Å resolution. Proc. Natl. Acad. Sci. USA 107, 19748–19753 (2010).

    Article  CAS  Google Scholar 

  29. Melnikov, S. et al. One core, two shells: bacterial and eukaryotic ribosomes. Nat. Struct. Mol. Biol. 19, 560–567 (2012).

    Article  CAS  Google Scholar 

  30. Blau, M. et al. ERj1p uses a universal ribosomal adaptor site to coordinate the 80S ribosome at the membrane. Nat. Struct. Mol. Biol. 12, 1015–1016 (2005).

    Article  CAS  Google Scholar 

  31. Preissler, S. & Deuerling, E. Ribosome-associated chaperones as key players in proteostasis. Trends Biochem. Sci. 37, 274–283 (2012).

    Article  CAS  Google Scholar 

  32. Schlenker, O., Hendricks, A., Sinning, I. & Wild, K. The structure of the mammalian signal recognition particle (SRP) receptor as prototype for the interaction of small GTPases with Longin domains. J. Biol. Chem. 281, 8898–8906 (2006).

    Article  CAS  Google Scholar 

  33. Rakwalska, M. & Rospert, S. The ribosome-bound chaperones RAC and Ssb1/2p are required for accurate translation in Saccharomyces cerevisiae. Mol. Cell Biol. 24, 9186–9197 (2004).

    Article  CAS  Google Scholar 

  34. Rospert, S., Rakwalska, M. & Dubaquie, Y. Polypeptide chain termination and stop codon readthrough on eukaryotic ribosomes. Rev. Physiol. Biochem. Pharmacol. 155, 1–30 (2005).

    Article  CAS  Google Scholar 

  35. Halic, M. et al. Structure of the signal recognition particle interacting with the elongation-arrested ribosome. Nature 427, 808–814 (2004).

    Article  CAS  Google Scholar 

  36. Amlacher, S. et al. Insight into structure and assembly of the nuclear pore complex by utilizing the genome of a eukaryotic thermophile. Cell 146, 277–289 (2011).

    Article  CAS  Google Scholar 

  37. Collaborative Computational Project, No. 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50, 760–763 (1994).

  38. Adams, P.D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).

    Article  CAS  Google Scholar 

  39. Jia-Xing, Y., Woolfson, M.M., Wilson, K.S. & Dodson, E.J. A modified ACORN to solve protein structures at resolutions of 1.7 Å or better. Acta Crystallogr. D Biol. Crystallogr. 61, 1465–1475 (2005).

    Article  Google Scholar 

  40. Langer, G., Cohen, S.X., Lamzin, V.S. & Perrakis, A. Automated macromolecular model building for X-ray crystallography using ARP/wARP version 7. Nat. Protoc. 3, 1171–1179 (2008).

    Article  CAS  Google Scholar 

  41. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  Google Scholar 

  42. Girish, V. & Vijayalakshmi, A. Affordable image analysis using NIH Image/ImageJ. Indian J. Cancer 41, 47 (2004).

    CAS  PubMed  Google Scholar 

  43. Wagenknecht, T., Grassucci, R. & Frank, J. Electron microscopy and computer image averaging of ice-embedded large ribosomal subunits from Escherichia coli. J. Mol. Biol. 199, 137–147 (1988).

    Article  CAS  Google Scholar 

  44. Shaikh, T.R. et al. SPIDER image processing for single-particle reconstruction of biological macromolecules from electron micrographs. Nat. Protoc. 3, 1941–1974 (2008).

    Article  CAS  Google Scholar 

  45. Norousi, R. et al. Automatic post-picking improves particle image detection from cryo-EM micrographs. Preprint at http://arxiv.org/abs/1112.3173v2 (2011).

  46. Penczek, P.A., Frank, J. & Spahn, C.M. A method of focused classification, based on the bootstrap 3D variance analysis, and its application to EF-G–dependent translocation. J. Struct. Biol. 154, 184–194 (2006).

    Article  CAS  Google Scholar 

  47. Becker, T. et al. Structure of monomeric yeast and mammalian Sec61 complexes interacting with the translating ribosome. Science 326, 1369–1373 (2009).

    Article  CAS  Google Scholar 

  48. Putnam, C.D., Hammel, M., Hura, G.L. & Tainer, J.A. X-ray solution scattering (SAXS) combined with crystallography and computation: defining accurate macromolecular structures, conformations and assemblies in solution. Q. Rev. Biophys. 40, 191–285 (2007).

    Article  CAS  Google Scholar 

  49. Konarev, P.V., Volkov, V.V., Sokolova, A.V., Koch, M.H.J. & Svergun, D.I. PRIMUS: a Windows PC–based system for small-angle scattering data analysis. J. Appl. Crystallogr. 36, 1277–1282 (2003).

    Article  CAS  Google Scholar 

  50. Svergun, D.I., Petoukhov, M.V. & Koch, M.H. Determination of domain structure of proteins from X-ray solution scattering. Biophys. J. 80, 2946–2953 (2001).

    Article  CAS  Google Scholar 

  51. Volkov, V.V. & Svergun, D.I. Uniqueness of ab initio shape determination in small-angle scattering. J. Appl. Crystallogr. 36, 860–864 (2003).

    Article  CAS  Google Scholar 

  52. Wriggers, W. Using Situs for the integration of multi-resolution structures. Biophys. Rev. 2, 21–27 (2010).

    Article  Google Scholar 

  53. Pettersen, E.F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Hendricks (BZH) for excellent technical assistance, C. Siegmann from the BZH Cluster of Excellence CellNetworks crystallization platform for technical support, and M. Rakwalska and R. Zimmermann for stimulating discussion. We thank O. Berninghausen and C. Ungewickell from the Ludwig Maximilians University Munich EM facility for their support, A. Bracher (Max Planck Institute for Biochemistry) for the Zuo1-N plasmid and S. Rospert for help with the ScRAC purification. X-ray data collection was performed at the European Synchrotron Radiation Facility (ESRF), and SAXS data were collected on the X33 beamline at the Deutsches Elektronen Synchotron–European Molecular Biology Laboratory (DESY/EMBL). We thank the staffs of both synchrotrons for excellent support. E.H. and I.S. are investigators of the Cluster of Excellence CellNetworks. G.B. is supported by the Peter and Traudl Engelhorn Foundation. R.B. and G.W. are funded by German Research Foundation (DFG) grant GRK1721. This work was supported by DFG grants to R.B. (FOR967 and SFB594) and I.S. (FOR967 and SFB638).

Author information

Authors and Affiliations

Authors

Contributions

C.L., G.B., R.B. and I.S. designed the experiments, analyzed the data and wrote the manuscript. G.B., A.A. and J.K. performed crystallographic analysis. C.L. and S.W. performed cryo-EM analysis. C.L. and G.W. performed SAXS analysis. S.A. and E.H. provided Ct80S ribosomes and cDNA of C. thermophilum. All authors commented on the manuscript.

Corresponding authors

Correspondence to Roland Beckmann or Irmgard Sinning.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 (PDF 1589 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leidig, C., Bange, G., Kopp, J. et al. Structural characterization of a eukaryotic chaperone—the ribosome-associated complex. Nat Struct Mol Biol 20, 23–28 (2013). https://doi.org/10.1038/nsmb.2447

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2447

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing