Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Phf19 links methylated Lys36 of histone H3 to regulation of Polycomb activity

Abstract

Polycomb-group proteins are transcriptional repressors with essential roles in embryonic development. Polycomb repressive complex 2 (PRC2) contains the methyltransferase activity for Lys27. However, the role of other histone modifications in regulating PRC2 activity is just beginning to be understood. Here we show that direct recognition of methylated histone H3 Lys36 (H3K36me), a mark associated with activation, by the PRC2 subunit Phf19 is required for the full enzymatic activity of the PRC2 complex. Using NMR spectroscopy, we provide structural evidence for this interaction. Furthermore, we show that Phf19 binds to a subset of PRC2 targets in mouse embryonic stem cells and that this is required for their repression and for H3K27me3 deposition. These findings show that the interaction of Phf19 with H3K36me2 and H3K36me3 is essential for PRC2 complex activity and for proper regulation of gene repression in embryonic stem cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Phf19 is a component of the PRC2 complex.
Figure 2: Binding of Phf19-Tudor to methylated H3K36.
Figure 3: NMR-based structural analysis of the complex between Phf19-Tudor and an H3 peptide methylated at Lys36.
Figure 4: Phf19 is in integral part of the PRC2 complex in mES cells.
Figure 5: Phf19 is required for PRC2 binding to target genes.
Figure 6: Role of Phf19 in pluripotency.
Figure 7: Molecular mechanism of Phf19-mediated gene repression.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

Protein Data Bank

References

  1. Sparmann, A. & van Lohuizen, M. Polycomb silencers control cell fate, development and cancer. Nat. Rev. Cancer 6, 846–856 (2006).

    Article  CAS  Google Scholar 

  2. Schwartz, Y.B. & Pirrotta, V. Polycomb silencing mechanisms and the management of genomic programmes. Nat. Rev. Genet. 8, 9–22 (2007).

    Article  CAS  Google Scholar 

  3. Bracken, A.P., Dietrich, N., Pasini, D., Hansen, K.H. & Helin, K. Genome-wide mapping of Polycomb target genes unravels their roles in cell fate transitions. Genes Dev. 20, 1123–1136 (2006).

    Article  CAS  Google Scholar 

  4. Boyer, L.A. et al. Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature 441, 349–353 (2006).

    Article  CAS  Google Scholar 

  5. O'Carroll, D. et al. The polycomb-group gene Ezh2 is required for early mouse development. Mol. Cell. Biol. 21, 4330–4336 (2001).

    Article  CAS  Google Scholar 

  6. Surface, L.E., Thornton, S.R. & Boyer, L.A. Polycomb group proteins set the stage for early lineage commitment. Cell Stem Cell 7, 288–298 (2010).

    Article  CAS  Google Scholar 

  7. Sauvageau, M. & Sauvageau, G. Polycomb group proteins: multi-faceted regulators of somatic stem cells and cancer. Cell Stem Cell 7, 299–313 (2010).

    Article  CAS  Google Scholar 

  8. Schmitges, F.W. et al. Histone methylation by PRC2 is inhibited by active chromatin marks. Mol. Cell 42, 330–341 (2011).

    Article  CAS  Google Scholar 

  9. Morey, L. et al. Nonoverlapping functions of the Polycomb group Cbx family of proteins in embryonic stem cells. Cell Stem Cell 10, 47–62 (2012).

    Article  CAS  Google Scholar 

  10. Sing, A. et al. A vertebrate Polycomb response element governs segmentation of the posterior hindbrain. Cell 138, 885–897 (2009).

    Article  CAS  Google Scholar 

  11. Woo, C.J., Kharchenko, P.V., Daheron, L., Park, P.J. & Kingston, R.E. A region of the human HOXD cluster that confers polycomb-group responsiveness. Cell 140, 99–110 (2010).

    Article  CAS  Google Scholar 

  12. Mendenhall, E.M. et al. GC-rich sequence elements recruit PRC2 in mammalian ES cells. PLoS Genet. 6, e1001244 (2010).

    Article  Google Scholar 

  13. Richly, H. et al. Transcriptional activation of polycomb-repressed genes by ZRF1. Nature 468, 1124–1128 (2010).

    Article  CAS  Google Scholar 

  14. Landeira, D. et al. Jarid2 is a PRC2 component in embryonic stem cells required for multi-lineage differentiation and recruitment of PRC1 and RNA Polymerase II to developmental regulators. Nat. Cell Biol. 12, 618–624 (2010).

    Article  CAS  Google Scholar 

  15. Pasini, D. et al. JARID2 regulates binding of the Polycomb repressive complex 2 to target genes in ES cells. Nature 464, 306–310 (2010).

    Article  CAS  Google Scholar 

  16. Peng, J.C. et al. Jarid2/Jumonji coordinates control of PRC2 enzymatic activity and target gene occupancy in pluripotent cells. Cell 139, 1290–1302 (2009).

    Article  Google Scholar 

  17. Shen, X. et al. Jumonji modulates polycomb activity and self-renewal versus differentiation of stem cells. Cell 139, 1303–1314 (2009).

    Article  Google Scholar 

  18. Nekrasov, M. et al. Pcl-PRC2 is needed to generate high levels of H3–K27 trimethylation at Polycomb target genes. EMBO J. 26, 4078–4088 (2007).

    Article  CAS  Google Scholar 

  19. Savla, U., Benes, J., Zhang, J. & Jones, R.S. Recruitment of Drosophila Polycomb-group proteins by Polycomblike, a component of a novel protein complex in larvae. Development 135, 813–817 (2008).

    Article  CAS  Google Scholar 

  20. Casanova, M. et al. Polycomblike 2 facilitates the recruitment of PRC2 Polycomb group complexes to the inactive X chromosome and to target loci in embryonic stem cells. Development 138, 1471–1482 (2011).

    Article  CAS  Google Scholar 

  21. Walker, E. et al. Polycomb-like 2 associates with PRC2 and regulates transcriptional networks during mouse embryonic stem cell self-renewal and differentiation. Cell Stem Cell 6, 153–166 (2010).

    Article  CAS  Google Scholar 

  22. Cao, R. et al. Role of hPHF1 in H3K27 methylation and Hox gene silencing. Mol. Cell. Biol. 28, 1862–1872 (2008).

    Article  CAS  Google Scholar 

  23. Sarma, K., Margueron, R., Ivanov, A., Pirrotta, V. & Reinberg, D. Ezh2 requires PHF1 to efficiently catalyze H3 lysine 27 trimethylation in vivo. Mol. Cell. Biol. 28, 2718–2731 (2008).

    Article  CAS  Google Scholar 

  24. Koh, A.S. et al. Aire employs a histone-binding module to mediate immunological tolerance, linking chromatin regulation with organ-specific autoimmunity. Proc. Natl. Acad. Sci. USA 105, 15878–15883 (2008).

    Article  CAS  Google Scholar 

  25. McGuffin, L.J., Bryson, K. & Jones, D.T. The PSIPRED protein structure prediction server. Bioinformatics 16, 404–405 (2000).

    Article  CAS  Google Scholar 

  26. Eissenberg, J.C. Structural biology of the chromodomain: form and function. Gene 496, 69–78 (2012).

    Article  CAS  Google Scholar 

  27. Bua, D.J. et al. Epigenome microarray platform for proteome-wide dissection of chromatin-signaling networks. PLoS ONE 4, e6789 (2009).

    Article  Google Scholar 

  28. Friberg, A., Oddone, A., Klymenko, T., Müller, J. & Sattler, M. Structure of an atypical Tudor domain in the Drosophila Polycomblike protein. Protein Sci. 19, 1906–1916 (2010).

    Article  CAS  Google Scholar 

  29. Lee, J., Thompson, J.R., Botuyan, M.V. & Mer, G. Distinct binding modes specify the recognition of methylated histones H3K4 and H4K20 by JMJD2A-Tudor. Nat. Struct. Mol. Biol. 15, 109–111 (2008).

    Article  CAS  Google Scholar 

  30. Botuyan, M.V. et al. Structural basis for the methylation state-specific recognition of histone H4–K20 by 53BP1 and Crb2 in DNA repair. Cell 127, 1361–1373 (2006).

    Article  CAS  Google Scholar 

  31. Huang, Y., Fang, J., Bedford, M.T., Zhang, Y. & Xu, R.M. Recognition of histone H3 lysine-4 methylation by the double Tudor domain of JMJD2A. Science 312, 748–751 (2006).

    Article  CAS  Google Scholar 

  32. Flanagan, J.F. et al. Double chromodomains cooperate to recognize the methylated histone H3 tail. Nature 438, 1181–1185 (2005).

    Article  CAS  Google Scholar 

  33. Jacobs, S.A. & Khorasanizadeh, S. Structure of HP1 chromodomain bound to a lysine 9-methylated histone H3 tail. Science 295, 2080–2083 (2002).

    Article  CAS  Google Scholar 

  34. Nielsen, P.R. et al. Structure of the HP1 chromodomain bound to histone H3 methylated at lysine 9. Nature 416, 103–107 (2002).

    Article  CAS  Google Scholar 

  35. Peña, P.V. et al. Molecular mechanism of histone H3K4me3 recognition by plant homeodomain of ING2. Nature 442, 100–103 (2006).

    Article  Google Scholar 

  36. Li, H. et al. Molecular basis for site-specific read-out of histone H3K4me3 by the BPTF PHD finger of NURF. Nature 442, 91–95 (2006).

    Article  CAS  Google Scholar 

  37. Vezzoli, A. et al. Molecular basis of histone H3K36me3 recognition by the PWWP domain of Brpf1. Nat. Struct. Mol. Biol. 17, 617–619 (2010).

    Article  CAS  Google Scholar 

  38. Margueron, R. et al. Role of the polycomb protein EED in the propagation of repressive histone marks. Nature 461, 762–767 (2009).

    Article  CAS  Google Scholar 

  39. Pasini, D., Bracken, A.P., Jensen, M.R., Lazzerini Denchi, E. & Helin, K. Suz12 is essential for mouse development and for EZH2 histone methyltransferase activity. EMBO J. 23, 4061–4071 (2004).

    Article  CAS  Google Scholar 

  40. Li, G. et al. Jarid2 and PRC2, partners in regulating gene expression. Genes Dev. 24, 368–380 (2010).

    Article  Google Scholar 

  41. Yuan, W. et al. H3K36 methylation antagonizes PRC2-mediated H3K27 methylation. J. Biol. Chem. 286, 7983–7989 (2011).

    Article  CAS  Google Scholar 

  42. Cloos, P.A., Christensen, J., Agger, K. & Helin, K. Erasing the methyl mark: histone demethylases at the center of cellular differentiation and disease. Genes Dev. 22, 1115–1140 (2008).

    Article  CAS  Google Scholar 

  43. Wagner, E.J. & Carpenter, P.B. Understanding the language of Lys36 methylation at histone H3. Nat. Rev. Mol. Cell Biol. 13, 115–126 (2012).

    Article  CAS  Google Scholar 

  44. Sun, B. et al. Molecular basis of the interaction of Saccharomyces cerevisiae Eaf3 chromo domain with methylated H3K36. J. Biol. Chem. 283, 36504–36512 (2008).

    Article  CAS  Google Scholar 

  45. Sánchez, C. et al. Proteomics analysis of Ring1B/Rnf2 interactors identifies a novel complex with the Fbxl10/Jhdm1B histone demethylase and the Bcl6 interacting corepressor. Mol. Cell. Proteomics 6, 820–834 (2007).

    Article  Google Scholar 

  46. He, J., Kallin, E.M., Tsukada, Y. & Zhang, Y. The H3K36 demethylase Jhdm1b/Kdm2b regulates cell proliferation and senescence through p15nk4b. Nat. Struct. Mol. Biol. 15, 1169–1175 (2008).

    Article  CAS  Google Scholar 

  47. He, J., Nguyen, A.T. & Zhang, Y. KDM2b/JHDM1b, an H3K36me2-specific demethylase, is required for initiation and maintenance of acute myeloid leukemia. Blood 117, 3869–3880 (2011).

    Article  CAS  Google Scholar 

  48. Liang, G., He, J. & Zhang, Y. Kdm2b promotes induced pluripotent stem cell generation by facilitating gene activation early in reprogramming. Nat. Cell Biol. 14, 457–466 (2012).

    Article  CAS  Google Scholar 

  49. Lange, M. et al. Regulation of muscle development by DPF3, a novel histone acetylation and methylation reader of the BAF chromatin remodeling complex. Genes Dev. 22, 2370–2384 (2008).

    Article  CAS  Google Scholar 

  50. Grzesiek, S. & Bax, A. Improved 3D triple-resonance NMR techniques applied to a 31-kDa protein. J. Magn. Reson. 96, 432–440 (1992).

    CAS  Google Scholar 

  51. Kay, L.E., Xu, G.Y., Singer, A.U., Muhandiram, D.R. & Formankay, J.D. A gradient-enhanced HCCH-TOCSY experiment for recording side-chain H-1 and C-13 correlations in H2O samples of proteins. J. Magn. Reson. B 101, 333–337 (1993).

    Article  CAS  Google Scholar 

  52. Schleucher, J., Sattler, M. & Griesinger, C. Coherence selection by gradients without signal attenuation – application to the 3-dimensional HNCO experiment. Angew. Chem. 32, 1489–1491 (1993).

    Article  Google Scholar 

  53. Wittekind, M. & Mueller, L. HNCACB, a high-sensitivity 3D NMR experiment to correlate amide proton and nitrogen resonances with the alpha-carbon and beta-carbon resonances in proteins. J. Magn. Reson. B 101, 201–205 (1993).

    Article  CAS  Google Scholar 

  54. Muhandiram, D.R. & Kay, L.E. Gradient-enhanced triple-resonance 3-dimensional NMR experiments with improved sensitivity. J. Magn. Reson. B 103, 203–216 (1994).

    Article  CAS  Google Scholar 

  55. Yamazaki, T., Lee, W., Arrowsmith, C.H., Muhandiram, D.R. & Kay, L.E. A suite of triple-resonance NMR experiments for the backbone assignment of N-15, C-13, H-2 labeled proteins with high sensitivity. J. Am. Chem. Soc. 116, 11655–11666 (1994).

    Article  CAS  Google Scholar 

  56. Grzesiek, S., Anglister, J. & Bax, A. Correlation of backbone amides and aliphatic side-chain resonances in C-13/N-15-enriched proteins by isotropic mixing of C-13 magnetization. J. Magn. Reson. B 101, 114–119 (1993).

    Article  CAS  Google Scholar 

  57. Montelione, G.T., Lyons, B.A., Emerson, S.D. & Tashiro, M. An efficient triple resonance experiment using C-13 isotropic mixing for determining sequence-specific resonance assignments of isotopically enriched proteins. J. Am. Chem. Soc. 114, 10974–10975 (1992).

    Article  CAS  Google Scholar 

  58. Yamazaki, T., Forman-Kay, J.D. & Kay, L.E. 2-dimensional NMR experiments for correlating C-13-beta and H-1-delta/epsilon chemical shifts of aromatic residues in C-13-labeled proteins via scalar couplings. J. Am. Chem. Soc. 115, 11054–11055 (1993).

    Article  CAS  Google Scholar 

  59. Zwahlen, C. et al. Methods for measurement of intermolecular NOEs by multinuclear NMR spectroscopy: Application to a bacteriophage lambda N-peptide/boxB RNA complex. J. Am. Chem. Soc. 119, 6711–6721 (1997).

    Article  CAS  Google Scholar 

  60. Wishart, D.S. & Sykes, B.D. The C-13 chemical shift index - a simple method for the identification of protein secondary structure using C-13 chemical shift data. J. Biomol. NMR 4, 171–180 (1994).

    Article  CAS  Google Scholar 

  61. Delaglio, F. et al. NMRPIPE—A multidimensional spectral processing system based on UNIX pipes. J. Biomol. NMR 6, 277–293 (1995).

    Article  CAS  Google Scholar 

  62. Johnson, B.A. & Blevins, R.A. NMR VIEW – A computer program for the visualization and analysis of NMR data. J. Biomol. NMR 4, 603–614 (1994).

    Article  CAS  Google Scholar 

  63. Linge, J.P., Habeck, M., Rieping, W. & Nilges, M. ARIA: automated NOE assignment and NMR structure calculation. Bioinformatics 19, 315–316 (2003).

    Article  CAS  Google Scholar 

  64. Nederveen, A.J. et al. RECOORD: a recalculated coordinate database of 500+ proteins from the PDB using restraints from the BioMagResBank. Proteins 59, 662–672 (2005).

    Article  CAS  Google Scholar 

  65. Bernard, A., Vranken, W.F., Bardiaux, B., Nilges, M. & Malliavin, T.E. Bayesian estimation of NMR restraint potential and weight: a validation on a representative set of protein structures. Proteins 79, 1525–1537 (2011).

    Article  CAS  Google Scholar 

  66. Linge, J.P. & Nilges, M. Influence of non-bonded parameters on the quality of NMR structures: A new force field for NMR structure calculation. J. Biomol. NMR 13, 51–59 (1999).

    Article  CAS  Google Scholar 

  67. Cornilescu, G., Delaglio, F. & Bax, A. Protein backbone angle restraints from searching a database for chemical shift and sequence homology. J. Biomol. NMR 13, 289–302 (1999).

    Article  CAS  Google Scholar 

  68. Linge, J.P., Williams, M.A., Spronk, C., Bonvin, A. & Nilges, M. Refinement of protein structures in explicit solvent. Proteins 50, 496–506 (2003).

    Article  CAS  Google Scholar 

  69. Nozinovic, S., Furtig, B., Jonker, H.R.A., Richter, C. & Schwalbe, H. High-resolution NMR structure of an RNA model system: the 14-mer cUUCGg tetraloop hairpin RNA. Nucleic Acids Res. 38, 683–694 (2010).

    Article  CAS  Google Scholar 

  70. Laskowski, R.A., Macarthur, M.W., Moss, D.S. & Thornton, J.M. PROCHECK—A program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26, 283–291 (1993).

    Article  CAS  Google Scholar 

  71. Vriend, G. WHAT IF: a molecular modeling and drug design program. J. Mol. Graph. 8, 52–56, 29 (1990).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank V.A. Raker for help in manuscript preparation, D. Patel, G. Castellano, A. Ladurner and members of the Di Croce laboratory for discussions, and the Centre for Genomic Regulation (CRG) Genomic, Bioinformatic and Proteomic Units. Peptides for NMR studies were supplied by R. Pipkorn, DKFZ (German Cancer Research Center). This work was supported by grants from the Spanish 'Ministerio de Educación y Ciencia' (BFU2010-18692), from AGAUR (Agency for Administration of University and Research Grants), from the European Commission's 7th Framework Program 4DCellFate grant number 277899 to L.D.C. and from the US National Institutes of Health (NCI118487 and GM071004) to Y.S. M.L. was supported by a Juan de la Cierva fellowship, R.L. was supported by a research fellowship from the German research foundation (DFG, LI 2057/1-1), and L.M. was supported by a postdoctoral CRG-Novartis fellowship. T.C., B.S. and A.L. were supported by the European Molecular Biology Laboratory.

Author information

Authors and Affiliations

Authors

Contributions

C.B., M.L., A.L., G.M.M., L.M., G.P., R.L., B.S., Y.S., O.G., T.C., S.A.B. and L.D.C. designed, executed and analyzed the experiments. C.B., M.L., O.G., T.C., S.A.B. and L.D.C. wrote the manuscript.

Corresponding author

Correspondence to Luciano Di Croce.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7, Supplementary Table 3 and Supplementary Note (PDF 6534 kb)

Supplementary Table 1

Summary table of ChIP-seq data: Phf19 binding sites (ChIP-seq peaks) and target genes (XLSX 957 kb)

Supplementary Table 2

Summary table of microarray data (XLSX 395 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ballaré, C., Lange, M., Lapinaite, A. et al. Phf19 links methylated Lys36 of histone H3 to regulation of Polycomb activity. Nat Struct Mol Biol 19, 1257–1265 (2012). https://doi.org/10.1038/nsmb.2434

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2434

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing