Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The binding of Varp to VAMP7 traps VAMP7 in a closed, fusogenically inactive conformation

Abstract

SNAREs provide energy and specificity to membrane fusion events. Fusogenic trans-SNARE complexes are assembled from glutamine-contributing SNAREs (Q-SNAREs) embedded in one membrane and an arginine-contributing SNARE (R-SNARE) embedded in the other. Regulation of membrane fusion events is crucial for intracellular trafficking. We identify the endosomal protein Varp as an R-SNARE–binding regulator of SNARE complex formation. Varp colocalizes with and binds to VAMP7, an R-SNARE that is involved in both endocytic and secretory pathways. We present the structure of the second ankyrin repeat domain of mammalian Varp in complex with the cytosolic portion of VAMP7. The VAMP7–SNARE motif is trapped between Varp and the VAMP7 longin domain, and hence Varp kinetically inhibits the ability of VAMP7 to form SNARE complexes. This inhibition will be increased when Varp can also bind to other proteins present on the same membrane as VAMP7, such as Rab32–GTP.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mapping and confirming the binding site of Varp on VAMP7.
Figure 2: Varp-HA is localized to vesicular-tubular elements of the endocytic pathway.
Figure 3: Molecular details of the interaction between Varp and VAMP7.
Figure 4: Analysis of the Varp–VAMP7 complex interface.
Figure 5: Mechanistic details and quantification of the Varp–VAMP7 interaction.
Figure 6: The effect of Varp on VAMP7-dependent SNARE complex formation.
Figure 7: Varp interacts with Rab38-GTP and VAMP7 but not VAMP8.
Figure 8: Model of Varp function on an endosomal membrane.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

References

  1. Hong, W. SNAREs and traffic. Biochim. Biophys. Acta 1744, 493–517 (2005).

    PubMed  Google Scholar 

  2. Jahn, R. & Scheller, R.H. SNAREs—engines for membrane fusion. Nat. Rev. Mol. Cell Biol. 7, 631–643 (2006).

    Article  CAS  Google Scholar 

  3. McNew, J.A. et al. Compartmental specificity of cellular membrane fusion encoded in SNARE proteins. Nature 407, 153–159 (2000).

    Article  CAS  Google Scholar 

  4. Paumet, F., Rahimian, V. & Rothman, J.E. The specificity of SNARE-dependent fusion is encoded in the SNARE motif. Proc. Natl. Acad. Sci. USA 101, 3376–3380 (2004).

    Article  CAS  Google Scholar 

  5. MacDonald, C., Munson, M. & Bryant, N.J. Autoinhibition of SNARE complex assembly by a conformational switch represents a conserved feature of syntaxins. Biochem. Soc. Trans. 38, 209–212 (2010).

    Article  CAS  Google Scholar 

  6. Burkhardt, P. et al. Munc18a controls SNARE assembly through its interaction with the syntaxin N-peptide. EMBO J. 27, 923–933 (2008).

    Article  CAS  Google Scholar 

  7. Hu, S.H. et al. Possible roles for Munc18–1 domain 3a and Syntaxin1 N-peptide and C-terminal anchor in SNARE complex formation. Proc. Natl. Acad. Sci. USA 108, 1040–1045 (2011).

    Article  CAS  Google Scholar 

  8. Misura, K.M., Scheller, R.H. & Weis, W.I. Three-dimensional structure of the neuronal-Sec1–syntaxin 1a complex. Nature 404, 355–362 (2000).

    Article  CAS  Google Scholar 

  9. Shen, J. et al. Selective activation of cognate SNAREpins by Sec1/Munc18 proteins. Cell 128, 183–195 (2007).

    Article  CAS  Google Scholar 

  10. Filippini, F. et al. Longins: a new evolutionary conserved VAMP family sharing a novel SNARE domain. Trends Biochem. Sci. 26, 407–409 (2001).

    Article  CAS  Google Scholar 

  11. Pryor, P.R. et al. Combinatorial SNARE complexes with VAMP7 or VAMP8 define different late endocytic fusion events. EMBO Rep. 5, 590–595 (2004).

    Article  CAS  Google Scholar 

  12. Fader, C.M. et al. TI-VAMP/VAMP7 and VAMP3/cellubrevin: two v-SNARE proteins involved in specific steps of the autophagy/multivesicular body pathways. Biochim. Biophys. Acta 1793, 1901–1916 (2009).

    Article  CAS  Google Scholar 

  13. Moreau, K. et al. Autophagosome precursor maturation requires homotypic fusion. Cell 146, 303–317 (2011).

    Article  CAS  Google Scholar 

  14. Rao, S.K. et al. Identification of SNAREs involved in synaptotagmin VII-regulated lysosomal exocytosis. J. Biol. Chem. 279, 20471–20479 (2004).

    Article  CAS  Google Scholar 

  15. Chaineau, M., Danglot, L. & Galli, T. Multiple roles of the vesicular-SNARE TI-VAMP in post-Golgi and endosomal trafficking. FEBS Lett. 583, 3817–3826 (2009).

    Article  CAS  Google Scholar 

  16. Steffen, A. et al. MT1-MMP–dependent invasion is regulated by TI-VAMP/VAMP7. Curr. Biol. 18, 926–931 (2008).

    Article  CAS  Google Scholar 

  17. Boucrot, E. & Kirchhausen, T. Endosomal recycling controls plasma membrane area during mitosis. Proc. Natl. Acad. Sci. USA 104, 7939–7944 (2007).

    Article  CAS  Google Scholar 

  18. Martinez-Arca, S. et al. Role of tetanus neurotoxin insensitive vesicle-associated membrane protein (TI-VAMP) in vesicular transport mediating neurite outgrowth. J. Cell Biol. 149, 889–900 (2000).

    Article  CAS  Google Scholar 

  19. Ohbayashi, N. et al. The Rab21-GEF activity of Varp, but not its Rab32/38 effector function, is required for dendrite formation in melanocytes. Mol. Biol. Cell 23, 669–678 (2012).

    Article  CAS  Google Scholar 

  20. Pryor, P.R. et al. Molecular basis for the sorting of the SNARE VAMP7 into endocytic clathrin-coated vesicles by the ArfGAP Hrb. Cell 134, 817–827 (2008).

    Article  CAS  Google Scholar 

  21. Burgo, A. et al. Role of Varp, a Rab21 exchange factor and TI-VAMP/VAMP7 partner, in neurite growth. EMBO Rep. 10, 1117–1124 (2009).

    Article  CAS  Google Scholar 

  22. Chaineau, M. et al. Role of HRB in clathrin-dependent endocytosis. J. Biol. Chem. 283, 34365–34373 (2008).

    Article  CAS  Google Scholar 

  23. Martinez-Arca, S. et al. A dual mechanism controlling the localization and function of exocytic v-SNAREs. Proc. Natl. Acad. Sci. USA 100, 9011–9016 (2003).

    Article  CAS  Google Scholar 

  24. Kent, H.M. et al. Structural basis of the intracellular sorting of the SNARE VAMP7 by the AP3 adaptor complex. Dev. Cell 22, 979–988 (2012).

    Article  CAS  Google Scholar 

  25. Zhang, X. et al. Varp is a Rab21 guanine nucleotide exchange factor and regulates endosome dynamics. J. Cell Sci. 119, 1053–1062 (2006).

    Article  CAS  Google Scholar 

  26. Tamura, K. et al. Varp is a novel Rab32/38-binding protein that regulates Tyrp1 trafficking in melanocytes. Mol. Biol. Cell 20, 2900–2908 (2009).

    Article  CAS  Google Scholar 

  27. Wang, F. et al. Varp interacts with Rab38 and functions as its potential effector. Biochem. Biophys. Res. Commun. 372, 162–167 (2008).

    Article  CAS  Google Scholar 

  28. Deléage, G., Blanchet, C. & Geourjon, C. Protein structure prediction. Implications for the biologist. Biochimie 79, 681–686 (1997).

    Article  Google Scholar 

  29. Linding, R. et al. GlobPlot: exploring protein sequences for globularity and disorder. Nucleic Acids Res. 31, 3701–3708 (2003).

    Article  CAS  Google Scholar 

  30. Finn, R.D. et al. The Pfam protein families database. Nucleic Acids Res. 36 Database issue, D281–D288 (2008).

    CAS  PubMed  Google Scholar 

  31. Advani, R.J. et al. VAMP-7 mediates vesicular transport from endosomes to lysosomes. J. Cell Biol. 146, 765–776 (1999).

    Article  CAS  Google Scholar 

  32. Klöpper, T.H. et al. Untangling the evolution of Rab G proteins: implications of a comprehensive genomic analysis. BMC Biol. 10, 71 (2012).

    Article  Google Scholar 

  33. Nottingham, R.M. et al. RUTBC1 protein, a Rab9A effector that activates GTP hydrolysis by Rab32 and Rab33B proteins. J. Biol. Chem. 286, 33213–33222 (2011).

    Article  CAS  Google Scholar 

  34. Su, A.I. et al. A gene atlas of the mouse and human protein-encoding transcriptomes. Proc. Natl. Acad. Sci. USA 101, 6062–6067 (2004).

    Article  CAS  Google Scholar 

  35. Wu, C. et al. BioGPS: an extensible and customizable portal for querying and organizing gene annotation resources. Genome Biol. 10, R130 (2009).

    Article  Google Scholar 

  36. Hirota, Y. & Tanaka, Y. A small GTPase, human Rab32, is required for the formation of autophagic vacuoles under basal conditions. Cell. Mol. Life Sci. 66, 2913–2932 (2009).

    Article  CAS  Google Scholar 

  37. Wang, C., Liu, Z. & Huang, X. Rab32 is important for autophagy and lipid storage in Drosophila. PLoS ONE 7, e32086 (2012).

    Article  CAS  Google Scholar 

  38. Wasmeier, C. et al. Rab38 and Rab32 control post-Golgi trafficking of melanogenic enzymes. J. Cell Biol. 175, 271–281 (2006).

    Article  CAS  Google Scholar 

  39. Vivona, S. et al. The longin SNARE VAMP7/TI-VAMP adopts a closed conformation. J. Biol. Chem. 285, 17965–17973 (2010).

    Article  CAS  Google Scholar 

  40. Krissinel, E. & Henrick, K. Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 372, 774–797 (2007).

    Article  CAS  Google Scholar 

  41. Wiederhold, K. et al. A coiled coil trigger site is essential for rapid binding of synaptobrevin to the SNARE acceptor complex. J. Biol. Chem. 285, 21549–21559 (2010).

    Article  CAS  Google Scholar 

  42. Antonin, W. et al. A SNARE complex mediating fusion of late endosomes defines conserved properties of SNARE structure and function. EMBO J. 19, 6453–6464 (2000).

    Article  CAS  Google Scholar 

  43. Antonin, W. et al. The R-SNARE endobrevin/VAMP-8 mediates homotypic fusion of early endosomes and late endosomes. Mol. Biol. Cell 11, 3289–3298 (2000).

    Article  CAS  Google Scholar 

  44. Antonin, W. et al. Crystal structure of the endosomal SNARE complex reveals common structural principles of all SNAREs. Nat. Struct. Biol. 9, 107–111 (2002).

    Article  CAS  Google Scholar 

  45. Höning, S. et al. Phosphatidylinositol-(4,5)-bisphosphate regulates sorting signal recognition by the clathrin-associated adaptor complex AP2. Mol. Cell 18, 519–531 (2005).

    Article  Google Scholar 

  46. Miller, S.E. et al. The molecular basis for the endocytosis of small R-SNAREs by the clathrin adaptor CALM. Cell 147, 1118–1131 (2011).

    Article  CAS  Google Scholar 

  47. Huotari, J. & Helenius, A. Endosome maturation. EMBO J. 30, 3481–3500 (2011).

    Article  CAS  Google Scholar 

  48. Luzio, J.P., Pryor, P.R. & Bright, N.A. Lysosomes: fusion and function. Nat. Rev. Mol. Cell Biol. 8, 622–632 (2007).

    Article  CAS  Google Scholar 

  49. Wiederhold, K. & Fasshauer, D. Is assembly of the SNARE complex enough to fuel membrane fusion? J. Biol. Chem. 284, 13143–13152 (2009).

    Article  CAS  Google Scholar 

  50. Hirst, J., Futter, C.E. & Hopkins, C.R. The kinetics of mannose 6-phosphate receptor trafficking in the endocytic pathway in HEp-2 cells: the receptor enters and rapidly leaves multivesicular endosomes without accumulating in a prelysosomal compartment. Mol. Biol. Cell 9, 809–816 (1998).

    Article  CAS  Google Scholar 

  51. Bao, X. et al. Molecular cloning, bacterial expression and properties of Rab31 and Rab32. Eur. J. Biochem. 269, 259–271 (2002).

    Article  CAS  Google Scholar 

  52. Leslie, A.G. The integration of macromolecular diffraction data. Acta Crystallogr. D Biol. Crystallogr. 62, 48–57 (2006).

    Article  Google Scholar 

  53. Evans, P. Scaling and assessment of data quality. Acta Crystallogr. D Biol. Crystallogr. 62, 72–82 (2006).

    Article  Google Scholar 

  54. Sheldrick, G.M. Experimental phasing with SHELXC/D/E: combining chain tracing with density modification. Acta Crystallogr. D Biol. Crystallogr. 66, 479–485 (2010).

    Article  CAS  Google Scholar 

  55. Vonrhein, C. et al. Automated structure solution with autoSHARP. Methods Mol. Biol. 364, 215–230 (2007).

    CAS  Google Scholar 

  56. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  Google Scholar 

  57. Murshudov, G.N. et al. REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr. D Biol. Crystallogr. 67, 355–367 (2011).

    Article  CAS  Google Scholar 

  58. Winn, M.D. et al. Overview of the CCP4 suite and current developments. Acta Crystallogr. D Biol. Crystallogr. 67, 235–242 (2011).

    Article  CAS  Google Scholar 

  59. Chen, V.B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 66, 12–21 (2010).

    Article  CAS  Google Scholar 

  60. McNicholas, S. et al. Presenting your structures: the CCP4mg molecular-graphics software. Acta Crystallogr. D Biol. Crystallogr. 67, 386–394 (2011).

    Article  CAS  Google Scholar 

  61. Bright, N.A., Gratian, M.J. & Luzio, J.P. Endocytic delivery to lysosomes mediated by concurrent fusion and kissing events in living cells. Curr. Biol. 15, 360–365 (2005).

    Article  CAS  Google Scholar 

  62. Liou, W., Geuze, H.J. & Slot, J.W. Improving structural integrity of cryosections for immunogold labeling. Histochem. Cell Biol. 106, 41–58 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the beamline staff at IO3 (SLS Diamond plc), H. Kent and R. Suckling (Medical Research Council (MRC) Laboratory of Molecular Biology) and L. Jackson and A. Peden (Cambridge Institute for Medical Research, Cambridge) for assistance and useful discussions. MNT-1 cells were a kind gift of D. Cutler (Laboratory for Molecular Cell Biology, University College, London). D.J.O. is funded by a Wellcome Trust Principal Research Fellowship (PRF), J.P.L. is funded by an MRC programme grant (G0900113), I.B.S. and P.R.E. are supported by MRC grant U105178845, and G.G.H. is supported by a postdoctoral fellowship from the Canadian Institutes of Health Research. The Cambridge Institute for Medical Research is supported by a Wellcome Trust Strategic Award (079895).

Author information

Authors and Affiliations

Authors

Contributions

I.B.S. performed biochemistry. I.B.S. and P.R.E. determined structures. G.G.H. performed cell biology, and N.A.B. performed electron microscopy. S.R.G. and P.R.P. performed Y2H. D.J.O., I.B.S. and J.P.L. conceived and designed the study.

Corresponding authors

Correspondence to J Paul Luzio or David J Owen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 and Supplementary Note (PDF 2246 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schäfer, I., Hesketh, G., Bright, N. et al. The binding of Varp to VAMP7 traps VAMP7 in a closed, fusogenically inactive conformation. Nat Struct Mol Biol 19, 1300–1309 (2012). https://doi.org/10.1038/nsmb.2414

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2414

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing