Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

DVC1 (C1orf124) recruits the p97 protein segregase to sites of DNA damage

Abstract

Ubiquitin-binding domains (UBDs) are crucial for recruiting many proteins to sites of DNA damage. Here we characterize C1orf124 (Spartan; referred to as DVC1), which has an UBZ4-type UBD found predominantly in DNA repair proteins. DVC1 associates with DNA replication factories and localizes to sites of DNA damage in human cells, in a manner that requires the ability of the DVC1 UBZ domain to bind to ubiquitin polymers in vitro and a conserved PCNA-interacting motif. DVC1 interacts with the p97 protein 'segregase'. We show that DVC1 recruits p97 to sites of DNA damage, where we propose that p97 facilitates the extraction of the translesion synthesis (TLS) polymerase (Pol) η during DNA repair to prevent excessive TLS and limit the incidence of mutations induced by DNA damage. We introduce DVC1 as a regulator of cellular responses to DNA damage that prevents mutations when DNA damage occurs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: DVC1 localizes at DNA replication factories in S phase.
Figure 2: DVC1 localizes at replication factories and sites of DNA damage.
Figure 3: The UBZ domain of DVC1 binds to polyubiquitin chains.
Figure 4: Control of DVC1 localization by the UBZ domain and PIP motif.
Figure 5: DVC1 recruits p97-NPL4-UFD1 to sites of DNA damage.
Figure 6: Impact of DVC1 on retention of Pol η at sites of DNA damage.
Figure 7: Genotoxin hypersensitivity of DVC1-depleted cells.

Similar content being viewed by others

References

  1. Haglund, K. & Dikic, I. Ubiquitylation and cell signaling. EMBO J. 24, 3353–3359 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ikeda, F. & Dikic, I. Atypical ubiquitin chains: new molecular signals. 'Protein modifications: beyond the usual suspects' review series. EMBO Rep. 9, 536–542 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hofmann, K. Ubiquitin-binding domains and their role in the DNA damage response. DNA Repair (Amst.) 8, 544–556 (2009).

    Article  CAS  Google Scholar 

  4. Sato, Y. et al. Structural basis for specific recognition of Lys 63-linked polyubiquitin chains by tandem UIMs of RAP80. EMBO J. 28, 2461–2468 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sims, J.J. & Cohen, R.E. Linkage-specific avidity defines the lysine 63-linked polyubiquitin-binding preference of rap80. Mol. Cell 33, 775–783 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Al-Hakim, A. et al. The ubiquitous role of ubiquitin in the DNA damage response. DNA Repair (Amst.) 9, 1229–1240 (2010).

    Article  CAS  Google Scholar 

  7. Lehmann, A.R. Ubiquitin-family modifications in the replication of DNA damage. FEBS Lett. 585, 2772–2779 (2011).

    Article  CAS  PubMed  Google Scholar 

  8. Hoege, C., Pfander, B., Moldovan, G.L., Pyrowolakis, G. & Jentsch, S. RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature 419, 135–141 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Parker, J.L. & Ulrich, H.D. Mechanistic analysis of PCNA poly-ubiquitylation by the ubiquitin protein ligases Rad18 and Rad5. EMBO J. 28, 3657–3666 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kannouche, P.L., Wing, J. & Lehmann, A.R. Interaction of human DNA polymerase eta with monoubiquitinated PCNA: a possible mechanism for the polymerase switch in response to DNA damage. Mol. Cell 14, 491–500 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Warbrick, E. PCNA binding through a conserved motif. BioEssays 20, 195–199 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Haracska, L. et al. Physical and functional interactions of human DNA polymerase eta with PCNA. Mol. Cell. Biol. 21, 7199–7206 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Haracska, L. et al. Targeting of human DNA polymerase iota to the replication machinery via interaction with PCNA. Proc. Natl. Acad. Sci. USA 98, 14256–14261 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Haracska, L. et al. Stimulation of DNA synthesis activity of human DNA polymerase kappa by PCNA. Mol. Cell. Biol. 22, 784–791 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Watanabe, K. et al. Rad18 guides poleta to replication stalling sites through physical interaction and PCNA monoubiquitination. EMBO J. 23, 3886–3896 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bienko, M. et al. Ubiquitin-binding domains in Y-family polymerases regulate translesion synthesis. Science 310, 1821–1824 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Plosky, B.S. et al. Controlling the subcellular localization of DNA polymerases iota and eta via interactions with ubiquitin. EMBO J. 25, 2847–2855 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yang, W. & Woodgate, R. What a difference a decade makes: insights into translesion DNA synthesis. Proc. Natl. Acad. Sci. USA 104, 15591–15598 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. MacKay, C. et al. Identification of KIAA1018/FAN1, a DNA repair nuclease recruited to DNA damage by monoubiquitinated FANCD2. Cell 142, 65–76 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Matic, I. et al. Site-specific identification of SUMO-2 targets in cells reveals an inverted SUMOylation motif and a hydrophobic cluster SUMOylation motif. Mol. Cell 39, 641–652 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. Liu, Q. et al. Novel human BTB/POZ domain-containing zinc finger protein ZBTB1 inhibits transcriptional activities of CRE. Mol. Cell. Biochem. 357, 405–414 (2011).

    Article  CAS  PubMed  Google Scholar 

  22. Hooper, N.M. Families of zinc metalloproteases. FEBS Lett. 354, 1–6 (1994).

    Article  CAS  PubMed  Google Scholar 

  23. Centore, R.C., Yazinski, S.A., Tse, A. & Zou, L. Spartan/C1orf124, a reader of PCNA ubiquitylation and a regulator of UV-induced DNA damage response. Mol. Cell 46, 625–635 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Machida, Y., Kim, M.S. & Machida, Y.J. Spartan/C1orf124 is important to prevent UV-induced mutagenesis. Cell Cycle 11, 3395–3402 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ghosal, G., Leung, J.W., Nair, B.C., Fong, K.W. & Chen, J. PCNA-binding protein C1orf124 is a regulator of translesion synthesis. J. Biol. Chem. advance online publication 17 August 2012 (doi:10.1074/jbc.M112.400135).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Taniguchi, T. et al. S-phase-specific interaction of the Fanconi anemia protein, FANCD2, with BRCA1 and RAD51. Blood 100, 2414–2420 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Kratz, K. et al. Deficiency of FANCD2-associated nuclease KIAA1018/FAN1 sensitizes cells to unterstrand crosslinking agents. Cell 142, 77–88 (2010).

    Article  CAS  PubMed  Google Scholar 

  28. Shiomi, N. et al. Human RAD18 is involved in S phase-specific single-strand break repair without PCNA monoubiquitination. Nucleic Acids Res. 35, e9 (2007).

    Article  PubMed  Google Scholar 

  29. Meerang, M. et al. The ubiquitin-selective segregase VCP/p97 orchestrates the response to DNA double-strand breaks. Nat. Cell Biol. 13, 1376–1382 (2011).

    Article  CAS  PubMed  Google Scholar 

  30. Acs, K. et al. The AAA-ATPase VCP/p97 promotes 53BP1 recruitment by removing L3MBTL1 from DNA double-strand breaks. Nat. Struct. Mol. Biol. 18, 1345–1350 (2011).

    Article  CAS  PubMed  Google Scholar 

  31. Meyer, H., Bug, M. & Bremer, S. Emerging functions of the VCP/p97 AAA-ATPase in the ubiquitin system. Nat. Cell Biol. 14, 117–123 (2012).

    Article  CAS  PubMed  Google Scholar 

  32. Zhang, Y. et al. Error-prone lesion bypass by human DNA polymerase eta. Nucleic Acids Res. 28, 4717–4724 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Parris, C.N. & Seidman, M.M. A signature element distinguishes sibling and independent mutations in a shuttle vector plasmid. Gene 117, 1–5 (1992).

    Article  CAS  PubMed  Google Scholar 

  34. Yeung, H.O. et al. Insights into adaptor binding to the AAA protein p97. Biochem. Soc. Trans. 36, 62–67 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. Bienko, M. et al. Regulation of translesion synthesis DNA polymerase eta by monoubiquitination. Mol. Cell 37, 396–407 (2010).

    Article  CAS  PubMed  Google Scholar 

  36. Maher, V.M., Ouellette, L.M., Curren, R.D. & McCormick, J.J. Frequency of ultraviolet light–induced mutations is higher in xeroderma pigmentosum variant cells than in normal human cells. Nature 261, 593–595 (1976).

    Article  CAS  PubMed  Google Scholar 

  37. Mosbech, A. et al. DVC1 (C1orf124) is a DNA damage-targeting p97 adaptor that promotes ubiquitin-dependent responses to replication blocks. Nat. Struct. Mol. Biol. advance online publication 7 October 2012 (doi:10.1038/nsmb.2395).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Lehmann (University of Sussex) for Pol η expression plasmid, T. Shiomi (National Institute of Radiological Sciences, Japan) for HCT-116 RAD18−/− cells, M. Seidman (US National Institute on Aging, National Institutes of Health) for plasmid pSP189 and bacterial strain MBM7070, R. Toth (University of Dundee) for mutagenized DVC1 constructs, N. Mailand for communicating data before publication, and G. Alexandru and members of the Rouse laboratory for useful discussions. We thank the Medical Research Council Protein Phosphorylation Unit DNA Sequencing Service and the support teams of the Division of Signal Transduction Therapy, including N. Helps, J. Hastie and H. MacLauchlan, and members of the Centre for High Resolution Image Processing for help with microscopy and image processing. This study was funded by the Division of Signal Transduction Therapy Unit (funded by AstraZeneca, Boehringer-Ingelheim, GlaxoSmithKline, Merck KgaA, Janssen Pharmaceutica and Pfizer) associated with the Medical Research Council Protein Phosphorylation Unit, the Medical Research Council UK (E.J.D., C.L., T.J.M. and J.R.), the Association for International Cancer Research (E.J.D. and J.R.) and Cancer Research UK (P.A. and I.N.).

Author information

Authors and Affiliations

Authors

Contributions

J.R. designed the project, conceived the experiments and wrote the manuscript; E.J.D. and C.L. performed all of the experiments; T.J.M. made all of the plasmids used in this study; and P.A. and I.N. helped with microscopy.

Corresponding author

Correspondence to John Rouse.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 and Supplementary Table 1 (PDF 1711 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davis, E., Lachaud, C., Appleton, P. et al. DVC1 (C1orf124) recruits the p97 protein segregase to sites of DNA damage. Nat Struct Mol Biol 19, 1093–1100 (2012). https://doi.org/10.1038/nsmb.2394

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2394

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing