Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Association of UHRF1 with methylated H3K9 directs the maintenance of DNA methylation

Abstract

A fundamental challenge in mammalian biology has been the elucidation of mechanisms linking DNA methylation and histone post-translational modifications. Human UHRF1 (ubiquitin-like PHD and RING finger domain–containing 1) has multiple domains that bind chromatin, and it is implicated genetically in the maintenance of DNA methylation. However, molecular mechanisms underlying DNA methylation regulation by UHRF1 are poorly defined. Here we show that UHRF1 association with methylated histone H3 Lys9 (H3K9) is required for DNA methylation maintenance. We further show that UHRF1 association with H3K9 methylation is insensitive to adjacent H3 S10 phosphorylation—a known mitotic 'phospho-methyl switch'. Notably, we demonstrate that UHRF1 mitotic chromatin association is necessary for DNA methylation maintenance through regulation of the stability of DNA methyltransferase-1. Collectively, our results define a previously unknown link between H3K9 methylation and the faithful epigenetic inheritance of DNA methylation, establishing a notable mitotic role for UHRF1 in this process.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The UHRF1 TTD binds H3K9me regardless of neighboring H3S10ph.
Figure 2: A structural basis for UHRF1 TTD insensitivity to H3S10ph.
Figure 3: Chromatin targeting of UHRF1 in mitosis is required for the maintenance of DNA methylation.
Figure 4: Chromatin targeting of UHRF1 in mitosis is required for the stability of DNMT1.
Figure 5: Proposed interaction between UHRF1, DNMT1 and H3K9 methylated histones in replicating and mitotic chromatin.

Similar content being viewed by others

Accession codes

Accessions

NCBI Reference Sequence

Protein Data Bank

References

  1. Kornberg, R.D. Chromatin structure: a repeating unit of histones and DNA. Science 184, 868–871 (1974).

    Article  CAS  PubMed  Google Scholar 

  2. Van Holde, K.E., Allen, J.R., Tatchell, K., Weischet, W.O. & Lohr, D. DNA-histone interactions in nucleosomes. Biophys. J. 32, 271–282 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Luger, K., Mader, A.W., Richmond, R.K., Sargent, D.F. & Richmond, T.J. Crystal structure of the nucleosome core particle at 2.8-Å resolution. Nature 389, 251–260 (1997).

    Article  CAS  PubMed  Google Scholar 

  4. Kouzarides, T. Chromatin modifications and their function. Cell 128, 693–705 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Tan, M. et al. Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification. Cell 146, 1016–1028 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Shogren-Knaak, M. et al. Histone H4-K16 acetylation controls chromatin structure and protein interactions. Science 311, 844–847 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Taverna, S.D., Li, H., Ruthenburg, A.J., Allis, C.D. & Patel, D.J. How chromatin-binding modules interpret histone modifications: lessons from professional pocket pickers. Nat. Struct. Mol. Biol. 14, 1025–1040 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Strahl, B.D. & Allis, C.D. The language of covalent histone modifications. Nature 403, 41–45 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Jenuwein, T. & Allis, C.D. Translating the histone code. Science 293, 1074–1080 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Jones, P.A. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat. Rev. Genet. 13, 484–492 (2012).

    Article  CAS  PubMed  Google Scholar 

  11. Tamaru, H. & Selker, E.U. A histone H3 methyltransferase controls DNA methylation in Neurospora crassa. Nature 414, 277–283 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Jackson, J.P., Lindroth, A.M., Cao, X. & Jacobsen, S.E. Control of CpNpG DNA methylation by the KRYPTONITE histone H3 methyltransferase. Nature 416, 556–560 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Lehnertz, B. et al. Suv39h-mediated histone H3 lysine 9 methylation directs DNA methylation to major satellite repeats at pericentric heterochromatin. Curr. Biol. 13, 1192–1200 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Cedar, H. & Bergman, Y. Linking DNA methylation and histone modification: patterns and paradigms. Nat. Rev. Genet. 10, 295–304 (2009).

    Article  CAS  PubMed  Google Scholar 

  15. Bostick, M. et al. UHRF1 plays a role in maintaining DNA methylation in mammalian cells. Science 317, 1760–1764 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Sharif, J. et al. The SRA protein Np95 mediates epigenetic inheritance by recruiting Dnmt1 to methylated DNA. Nature 450, 908–912 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Arita, K., Ariyoshi, M., Tochio, H., Nakamura, Y. & Shirakawa, M. Recognition of hemi-methylated DNA by the SRA protein UHRF1 by a base-flipping mechanism. Nature 455, 818–821 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. Avvakumov, G.V. et al. Structural basis for recognition of hemi-methylated DNA by the SRA domain of human UHRF1. Nature 455, 822–825 (2008).

    Article  CAS  PubMed  Google Scholar 

  19. Hashimoto, H. et al. The SRA domain of UHRF1 flips 5-methylcytosine out of the DNA helix. Nature 455, 826–829 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Nady, N. et al. Recognition of multivalent histone states associated with heterochromatin by UHRF1 protein. J. Biol. Chem. 286, 24300–24311 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ebert, A., Lein, S., Schotta, G. & Reuter, G. Histone modification and the control of heterochromatic gene silencing in Drosophila. Chromosome Res. 14, 377–392 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Grewal, S.I. & Elgin, S.C. Transcription and RNA interference in the formation of heterochromatin. Nature 447, 399–406 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hawkins, R.D. et al. Distinct epigenomic landscapes of pluripotent and lineage-committed human cells. Cell Stem Cell 6, 479–491 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ernst, J. et al. Mapping and analysis of chromatin state dynamics in nine human cell types. Nature 473, 43–49 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rothbart, S.B., Krajewski, K., Strahl, B.D. & Fuchs, S.M. Peptide microarrays to interrogate the “histone code”. Methods Enzymol. 512, 107–135 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Fuchs, S.M., Krajewski, K., Baker, R.W., Miller, V.L. & Strahl, B.D. Influence of combinatorial histone modifications on antibody and effector protein recognition. Curr. Biol. 21, 53–58 (2011).

    Article  CAS  PubMed  Google Scholar 

  27. Bock, I. et al. Application of Celluspots peptide arrays for the analysis of the binding specificity of epigenetic reading domains to modified histone tails. BMC Biochem. 12, 48 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Garske, A.L. et al. Combinatorial profiling of chromatin-binding modules reveals multisite discrimination. Nat. Chem. Biol. 6, 283–290 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Fischle, W. et al. Regulation of HP1-chromatin binding by histone H3 methylation and phosphorylation. Nature 438, 1116–1122 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Hirota, T., Lipp, J.J., Toh, B.H. & Peters, J.M. Histone H3 serine 10 phosphorylation by Aurora B causes HP1 dissociation from heterochromatin. Nature 438, 1176–1180 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Chang, Y., Horton, J.R., Bedford, M.T., Zhang, X. & Cheng, X. Structural insights for MPP8 chromodomain interaction with histone H3 lysine 9: potential effect of phosphorylation on methyl-lysine binding. J. Mol. Biol. 408, 807–814 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jacobs, S.A. & Khorasanizadeh, S. Structure of HP1 chromodomain bound to a lysine 9-methylated histone H3 tail. Science 295, 2080–2083 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Rajakumara, E. et al. PHD finger recognition of unmodified histone H3R2 links UHRF1 to regulation of euchromatic gene expression. Mol. Cell 43, 275–284 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jeong, S. et al. Selective anchoring of DNA methyltransferases 3A and 3B to nucleosomes containing methylated DNA. Mol. Cell. Biol. 29, 5366–5376 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Citterio, E. et al. Np95 is a histone-binding protein endowed with ubiquitin ligase activity. Mol. Cell. Biol. 24, 2526–2535 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Jenkins, Y. et al. Critical role of the ubiquitin ligase activity of UHRF1, a nuclear RING finger protein, in tumor cell growth. Mol. Biol. Cell 16, 5621–5629 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sharma, S., De Carvalho, D.D., Jeong, S., Jones, P.A. & Liang, G. Nucleosomes containing methylated DNA stabilize DNA methyltransferases 3A/3B and ensure faithful epigenetic inheritance. PLoS Genet. 7, e1001286 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kuo, A.J. et al. The BAH domain of ORC1 links H4K20me2 to DNA replication licensing and Meier-Gorlin syndrome. Nature 484, 115–119 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rohde, C., Zhang, Y., Reinhardt, R. & Jeltsch, A. BISMA—fast and accurate bisulfite sequencing data analysis of individual clones from unique and repetitive sequences. BMC Bioinformatics 11, 230 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank members of the Strahl laboratory for helpful discussions and H. Fried (University of North Carolina (UNC) Chapel Hill) for critical reading of the manuscript. We also thank the North Carolina Biotechnology Center (NCBC) and the UNC School of Medicine for support in the establishment of the High Throughput Peptide Synthesis and Array Core Facility at UNC Chapel Hill. This work was supported by research grants from the US National Institutes of Health (GM085394) to B.D.S. and (T32CA09156) to S.B.R., the NCBC (2010-IDG-I003) to B.D.S., the Cancer Prevention and Research Institute of Texas (RP110471) to M.T.B., the Natural Sciences and Engineering Research Council of Canada to C.H.A. and the Ontario Ministry of Health and Long-Term Care to C.H.A. and N.N. The Structural Genomics Consortium is a registered charity (no. 1097737) that receives funds from the Canadian Institutes of Health Research, Eli Lilly Canada, Genome Canada, GlaxoSmithKline, the Ontario Ministry of Economic Development and Innovation, the Novartis Research Foundation, Pfizer, Abbott, Takeda and the Wellcome Trust. C.H.A. holds a Canada Research Chair in Structural Genomics.

Author information

Authors and Affiliations

Authors

Contributions

S.B.R. and B.D.S. designed experiments. S.B.R. performed and analyzed peptide array, biophysical, molecular biology and cellular studies. K.K. performed peptide synthesis and contributed to data analysis. N.N., W.T., S.X. and C.H.A. designed, performed and analyzed structural studies. A.I.B. and J.Y.M. contributed to cloning and protein production. D.B.-L. produced lentivirus. S.M.F. and M.T.B. contributed key technical assistance and reagents for array studies. S.B.R., N.N., C.H.A. and B.D.S. wrote the manuscript.

Corresponding author

Correspondence to Brian D Strahl.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4 and Supplementary Table 1 (PDF 10465 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rothbart, S., Krajewski, K., Nady, N. et al. Association of UHRF1 with methylated H3K9 directs the maintenance of DNA methylation. Nat Struct Mol Biol 19, 1155–1160 (2012). https://doi.org/10.1038/nsmb.2391

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2391

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing