Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure of a topoisomerase II–DNA–nucleotide complex reveals a new control mechanism for ATPase activity

Abstract

Type IIA topoisomerases control DNA supercoiling and disentangle chromosomes through a complex ATP-dependent strand-passage mechanism. Although a general framework exists for type IIA topoisomerase function, the architecture of the full-length enzyme has remained undefined. Here we present the structure of a fully catalytic Saccharomyces cerevisiae topoisomerase II homodimer complexed with DNA and a nonhydrolyzable ATP analog. The enzyme adopts a domain-swapped configuration wherein the ATPase domain of one protomer sits atop the nucleolytic region of its partner subunit. This organization produces an unexpected interaction between bound DNA and a conformational transducing element in the ATPase domain, which we show is critical for both DNA-stimulated ATP hydrolysis and global topoisomerase activity. Our data indicate that the ATPase domains pivot about each other to ensure unidirectional strand passage and that this state senses bound DNA to promote ATP turnover and enzyme reset.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of topo II bound to DNA and AMPPNP.
Figure 2: The topo II ATPase domain appears to engage bound DNA.
Figure 3: K-loop mutants are deficient at relaxing negatively supercoiled DNA.
Figure 4: K-loop mutants are defective for decatenation but not for DNA cleavage.
Figure 5: K-loop mutants maintain basal ATPase rates but lose DNA stimulation of ATP hydrolysis.
Figure 6: Oligonucleotides stimulate ATP hydrolysis in a length-dependent manner.
Figure 7: Unexpected complexities in the type IIA topoisomerase catalytic cycle.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Bustamante, C., Cheng, W. & Mejia, Y.X. Revisiting the central dogma one molecule at a time. Cell 144, 480–497 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Schoeffler, A.J. & Berger, J.M. DNA topoisomerases: harnessing and constraining energy to govern chromosome topology. Q. Rev. Biophys. 41, 41–101 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Roca, J. & Wang, J.C. The capture of a DNA double helix by an ATP-dependent protein clamp: a key step in DNA transport by type II DNA topoisomerases. Cell 71, 833–840 (1992).

    Article  CAS  PubMed  Google Scholar 

  4. Roca, J., Berger, J.M., Harrison, S.C. & Wang, J.C. DNA transport by a type II topoisomerase: direct evidence for a two-gate mechanism. Proc. Natl. Acad. Sci. USA 93, 4057–4062 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wigley, D.B., Davies, G.J., Dodson, E.J., Maxwell, A. & Dodson, G. Crystal structure of an N-terminal fragment of the DNA gyrase B protein. Nature 351, 624–629 (1991).

    Article  CAS  PubMed  Google Scholar 

  6. Berger, J.M., Gamblin, S.J., Harrison, S.C. & Wang, J.C. Structure and mechanism of DNA topoisomerase II. Nature 379, 225–232 (1996).

    Article  CAS  PubMed  Google Scholar 

  7. Morais Cabral, J.H. et al. Crystal structure of the breakage-reunion domain of DNA gyrase. Nature 388, 903–906 (1997).

    Article  CAS  PubMed  Google Scholar 

  8. Roca, J. & Wang, J.C. DNA transport by a type II DNA topoisomerase: evidence in favor of a two-gate mechanism. Cell 77, 609–616 (1994).

    Article  CAS  PubMed  Google Scholar 

  9. Worland, S.T. & Wang, J.C. Inducible overexpression, purification, and active site mapping of DNA topoisomerase II from the yeast Saccharomyces cerevisiae. J. Biol. Chem. 264, 4412–4416 (1989).

    CAS  PubMed  Google Scholar 

  10. Tse, Y.C., Kirkegaard, K. & Wang, J.C. Covalent bonds between protein and DNA. Formation of phosphotyrosine linkage between certain DNA topoisomerases and DNA. J. Biol. Chem. 255, 5560–5565 (1980).

    CAS  PubMed  Google Scholar 

  11. Aravind, L., Leipe, D.D. & Koonin, E.V. Toprim–a conserved catalytic domain in type IA and II topoisomerases, DnaG-type primases, OLD family nucleases and RecR proteins. Nucleic Acids Res. 26, 4205–4213 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lindsley, J.E. & Wang, J.C. Study of allosteric communication between protomers by immunotagging. Nature 361, 749–750 (1993).

    Article  CAS  PubMed  Google Scholar 

  13. Gellert, M., Fisher, L.M. & O'Dea, M.H. DNA gyrase: purification and catalytic properties of a fragment of gyrase B protein. Proc. Natl. Acad. Sci. USA 76, 6289–6293 (1979).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Brown, P.O., Peebles, C.L. & Cozzarelli, N.R. A topoisomerase from Escherichia coli related to DNA gyrase. Proc. Natl. Acad. Sci. USA 76, 6110–6114 (1979).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Williams, N.L. & Maxwell, A. Locking the DNA gate of DNA gyrase: investigating the effects on DNA cleavage and ATP hydrolysis. Biochemistry 38, 14157–14164 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Williams, N.L. & Maxwell, A. Probing the two-gate mechanism of DNA gyrase using cysteine cross-linking. Biochemistry 38, 13502–13511 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Classen, S., Olland, S. & Berger, J.M. Structure of the topoisomerase II ATPase region and its mechanism of inhibition by the chemotherapeutic agent ICRF-187. Proc. Natl. Acad. Sci. USA 100, 10629–10634 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mizuuchi, K., O'Dea, M.H. & Gellert, M. DNA gyrase: subunit structure and ATPase activity of the purified enzyme. Proc. Natl. Acad. Sci. USA 75, 5960–5963 (1978).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lindsley, J.E. & Wang, J.C. On the coupling between ATP usage and DNA transport by yeast DNA topoisomerase II. J. Biol. Chem. 268, 8096–8104 (1993).

    CAS  PubMed  Google Scholar 

  20. Osheroff, N., Shelton, E.R. & Brutlag, D.L. DNA topoisomerase II from Drosophila melanogaster. Relaxation of supercoiled DNA. J. Biol. Chem. 258, 9536–9543 (1983).

    CAS  PubMed  Google Scholar 

  21. Harkins, T.T., Lewis, T.J. & Lindsley, J.E. Pre-steady-state analysis of ATP hydrolysis by Saccharomyces cerevisiae DNA topoisomerase II. 2. Kinetic mechanism for the sequential hydrolysis of two ATP. Biochemistry 37, 7299–7312 (1998).

    Article  CAS  PubMed  Google Scholar 

  22. Dutta, R. & Inouye, M. GHKL, an emergent ATPase/kinase superfamily. Trends Biochem. Sci. 25, 24–28 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Laponogov, I. et al. Structural basis of gate-DNA breakage and resealing by type II topoisomerases. PLoS ONE 5, e11338 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Laponogov, I. et al. Structural insight into the quinolone-DNA cleavage complex of type IIA topoisomerases. Nat. Struct. Mol. Biol. 16, 667–669 (2009).

    Article  CAS  PubMed  Google Scholar 

  25. Wohlkonig, A. et al. Structural basis of quinolone inhibition of type IIA topoisomerases and target-mediated resistance. Nat. Struct. Mol. Biol. 17, 1152–1153 (2010).

    Article  CAS  PubMed  Google Scholar 

  26. Bax, B.D. et al. Type IIA topoisomerase inhibition by a new class of antibacterial agents. Nature 466, 935–940 (2010).

    Article  PubMed  Google Scholar 

  27. Schmidt, B.H., Burgin, A.B., Deweese, J.E., Osheroff, N. & Berger, J.M. A novel and unified two-metal mechanism for DNA cleavage by type II and IA topoisomerases. Nature 465, 641–644 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wu, C.C. et al. Structural basis of type II topoisomerase inhibition by the anticancer drug etoposide. Science 333, 459–462 (2011).

    Article  CAS  PubMed  Google Scholar 

  29. Wendorff, T.J., Schmidt, B.H., Heslop, P., Austin, C.A. & Berger, J.M. The structure of DNA-bound human topoisomerase II alpha: conformational mechanisms for coordinating inter-subunit interactions with DNA cleavage. J. Mol. Biol. published online, doi:10.1016/j.jmb.2012.07.014 (25 July 2012).

  30. Kampranis, S.C., Bates, A.D. & Maxwell, A. A model for the mechanism of strand passage by DNA gyrase. Proc. Natl. Acad. Sci. USA 96, 8414–8419 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Schultz, P., Olland, S., Oudet, P. & Hancock, R. Structure and conformational changes of DNA topoisomerase II visualized by electron microscopy. Proc. Natl. Acad. Sci. USA 93, 5936–5940 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lamour, V., Hoermann, L., Jeltsch, J.M., Oudet, P. & Moras, D. An open conformation of the Thermus thermophilus gyrase B ATP-binding domain. J. Biol. Chem. 277, 18947–18953 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Brino, L. et al. Dimerization of Escherichia coli DNA-gyrase B provides a structural mechanism for activating the ATPase catalytic center. J. Biol. Chem. 275, 9468–9475 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Wei, H., Ruthenburg, A.J., Bechis, S.K. & Verdine, G.L. Nucleotide-dependent domain movement in the ATPase domain of a human type IIA DNA topoisomerase. J. Biol. Chem. 280, 37041–37047 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Bjergbaek, L. et al. Communication between the ATPase and cleavage/religation domains of human topoisomerase IIα. J. Biol. Chem. 275, 13041–13048 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Liu, L.F., Liu, C.C. & Alberts, B.M. Type II DNA topoisomerases: enzymes that can unknot a topologically knotted DNA molecule via a reversible double-strand break. Cell 19, 697–707 (1980).

    Article  CAS  PubMed  Google Scholar 

  37. Marini, J.C., Miller, K.G. & Englund, P.T. Decatenation of kinetoplast DNA by topoisomerases. J. Biol. Chem. 255, 4976–4979 (1980).

    CAS  PubMed  Google Scholar 

  38. Osheroff, N. & Zechiedrich, E.L. Calcium-promoted DNA cleavage by eukaryotic topoisomerase II: trapping the covalent enzyme-DNA complex in an active form. Biochemistry 26, 4303–4309 (1987).

    Article  CAS  PubMed  Google Scholar 

  39. Lindsley, J.E. Use of a real-time, coupled assay to measure the ATPase activity of DNA topoisomerase II. Methods Mol. Biol. 95, 57–64 (2001).

    CAS  PubMed  Google Scholar 

  40. Tamura, J.K. & Gellert, M. Characterization of the ATP binding site on Escherichia coli DNA gyrase. Affinity labeling of Lys-103 and Lys-110 of the B subunit by pyridoxal 5′-diphospho-5′-adenosine. J. Biol. Chem. 265, 21342–21349 (1990).

    CAS  PubMed  Google Scholar 

  41. Maxwell, A. & Gellert, M. The DNA dependence of the ATPase activity of DNA gyrase. J. Biol. Chem. 259, 14472–14480 (1984).

    CAS  PubMed  Google Scholar 

  42. Hammonds, T.R. & Maxwell, A. The DNA dependence of the ATPase activity of human DNA topoisomerase IIα. J. Biol. Chem. 272, 32696–32703 (1997).

    Article  CAS  PubMed  Google Scholar 

  43. West, K.L., Turnbull, R.M., Willmore, E., Lakey, J.H. & Austin, C.A. Characterisation of the DNA-dependent ATPase activity of human DNA topoisomerase IIbeta: mutation of Ser165 in the ATPase domain reduces the ATPase activity and abolishes the in vivo complementation ability. Nucleic Acids Res. 30, 5416–5424 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mueller-Planitz, F. & Herschlag, D. DNA topoisomerase II selects DNA cleavage sites based on reactivity rather than binding affinity. Nucleic Acids Res. 35, 3764–3773 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Shiozaki, K. & Yanagida, M. Functional dissection of the phosphorylated termini of fission yeast DNA topoisomerase II. J. Cell Biol. 119, 1023–1036 (1992).

    Article  CAS  PubMed  Google Scholar 

  46. Cardenas, M.E., Dang, Q., Glover, C.V. & Gasser, S.M. Casein kinase II phosphorylates the eukaryote-specific C-terminal domain of topoisomerase II in vivo. EMBO J. 11, 1785–1796 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. McClendon, A.K. et al. Bimodal recognition of DNA geometry by human topoisomerase II α: preferential relaxation of positively supercoiled DNA requires elements in the C-terminal domain. Biochemistry 47, 13169–13178 (2008).

    Article  CAS  PubMed  Google Scholar 

  48. Caron, P.R., Watt, P. & Wang, J.C. The C-terminal domain of Saccharomyces cerevisiae DNA topoisomerase II. Mol. Cell. Biol. 14, 3197–3207 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Roca, J. The path of the DNA along the dimer interface of topoisomerase II. J. Biol. Chem. 279, 25783–25788 (2004).

    Article  CAS  PubMed  Google Scholar 

  50. Baird, C.L., Harkins, T.T., Morris, S.K. & Lindsley, J.E. Topoisomerase II drives DNA transport by hydrolyzing one ATP. Proc. Natl. Acad. Sci. USA 96, 13685–13690 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Osheroff, N. Eukaryotic topoisomerase II. Characterization of enzyme turnover. J. Biol. Chem. 261, 9944–9950 (1986).

    CAS  PubMed  Google Scholar 

  52. Tingey, A.P. & Maxwell, A. Probing the role of the ATP-operated clamp in the strand-passage reaction of DNA gyrase. Nucleic Acids Res. 24, 4868–4873 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Li, W. & Wang, J.C. Footprinting of yeast DNA topoisomerase II lysyl side chains involved in substrate binding and interdomainal interactions. J. Biol. Chem. 272, 31190–31195 (1997).

    Article  CAS  PubMed  Google Scholar 

  54. Choudhary, C. et al. Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 325, 834–840 (2009).

    Article  CAS  PubMed  Google Scholar 

  55. Bates, A.D., Berger, J.M. & Maxwell, A. The ancestral role of ATP hydrolysis in type II topoisomerases: prevention of DNA double-strand breaks. Nucleic Acids Res. 39, 6327–6339 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ali, M.M. et al. Crystal structure of an Hsp90-nucleotide-p23/Sba1 closed chaperone complex. Nature 440, 1013–1017 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Gellert, M., Mizuuchi, K., O'Dea, M.H. & Nash, H.A. DNA gyrase: an enzyme that introduces superhelical turns into DNA. Proc. Natl. Acad. Sci. USA 73, 3872–3876 (1976).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lee, S. et al. DNA cleavage and opening reactions of human topoisomerase IIα are regulated via Mg2+-mediated dynamic bending of gate-DNA. Proc. Natl. Acad. Sci. USA 109, 2925–2930 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Skouboe, C. et al. A human topoisomerase II α heterodimer with only one ATP binding site can go through successive catalytic cycles. J. Biol. Chem. 278, 5768–5774 (2003).

    Article  CAS  PubMed  Google Scholar 

  60. Göttler, T. & Klostermeier, D. Dissection of the nucleotide cycle of B. subtilis DNA gyrase and its modulation by DNA. J. Mol. Biol. 367, 1392–1404 (2007).

    Article  CAS  PubMed  Google Scholar 

  61. Deweese, J.E., Burgin, A.B. & Osheroff, N. Using 3′-bridging phosphorothiolates to isolate the forward DNA cleavage reaction of human topoisomerase IIα. Biochemistry 47, 4129–4140 (2008).

    Article  CAS  PubMed  Google Scholar 

  62. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  PubMed  Google Scholar 

  63. McCoy, A.J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Emsley, P., Lohkamp, B., Scott, W.G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Adams, P.D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Chen, V.B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 66, 12–21 (2010).

    Article  CAS  PubMed  Google Scholar 

  67. The PyMOL Molecular Graphics System. Version 1.5.0.1 Schrödinger, LLC.

Download references

Acknowledgements

The authors thank A. Burgin, at Emerald BioStructures, Bainbridge Island, Washington, USA, for synthesizing the phosphorothioamidite reagent, as well as members of the Berger Lab for helpful discussions. This work was supported by a US National Institutes of Health training grant (GM08295 to B.H.S.) and the US National Cancer Institute (CA077373 to J.M.B.) and the US National Institutes of Health (GM33944 to N.O.).

Author information

Authors and Affiliations

Authors

Contributions

B.H.S., J.M.B. and N.O. designed the experiments. B.H.S. performed all of the experiments. B.H.S. and J.M.B. wrote the paper.

Corresponding author

Correspondence to James M Berger.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 (PDF 1009 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmidt, B., Osheroff, N. & Berger, J. Structure of a topoisomerase II–DNA–nucleotide complex reveals a new control mechanism for ATPase activity. Nat Struct Mol Biol 19, 1147–1154 (2012). https://doi.org/10.1038/nsmb.2388

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2388

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing