Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A biphasic pulling force acts on transmembrane helices during translocon-mediated membrane integration

Abstract

Membrane proteins destined for insertion into the inner membrane of bacteria or the endoplasmic reticulum membrane in eukaryotic cells are synthesized by ribosomes bound to the bacterial SecYEG or the homologous eukaryotic Sec61 translocon. During co-translational membrane integration, transmembrane α-helical segments in the nascent chain exit the translocon through a lateral gate that opens toward the surrounding membrane, but the mechanism of lateral exit is not well understood. In particular, little is known about how a transmembrane helix behaves when entering and exiting the translocon. Using translation-arrest peptides from bacterial SecM proteins and from the mammalian Xbp1 protein as force sensors, we show that substantial force is exerted on a transmembrane helix at two distinct points during its transit through the translocon channel, providing direct insight into the dynamics of membrane integration.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Translation arrest of Lep constructs induced by the M. succiniciproducens and E. coli SecM arrest peptides.
Figure 2: A biphasic pulling force acts on the nascent chain.
Figure 3: Determination of the location of the H segment in the translocon by glycosylation mapping.
Figure 4: Model for membrane integration.

Similar content being viewed by others

References

  1. White, S.H. & von Heijne, G. How translocons select transmembrane helices. Annu. Rev. Biophys. 37, 23–42 (2008).

    Article  CAS  Google Scholar 

  2. Hessa, T. et al. Recognition of transmembrane helices by the endoplasmic reticulum translocon. Nature 433, 377–381 (2005).

    Article  CAS  Google Scholar 

  3. Hessa, T. et al. Molecular code for transmembrane-helix recognition by the Sec61 translocon. Nature 450, 1026–1030 (2007).

    Article  CAS  Google Scholar 

  4. Schow, E.V. et al. Arginine in membranes: On the connection between molecular dynamics simulations and translocon-mediated insertion experiments. J. Membr. Biol. 239, 35–48 (2011).

    Article  CAS  Google Scholar 

  5. Ito, K., Chiba, S. & Pogliano, K. Divergent stalling sequences sense and control cellular physiology. Biochem. Biophys. Res. Commun. 393, 1–5 (2010).

    Article  CAS  Google Scholar 

  6. Sarker, S., Rudd, K.E. & Oliver, D. Revised translation start site for secM defines an atypical signal peptide that regulates Escherichia coli secA expression. J. Bacteriol. 182, 5592–5595 (2000).

    Article  CAS  Google Scholar 

  7. Nakatogawa, H. & Ito, K. Secretion monitor, SecM, undergoes self-translation arrest in the cytosol. Mol. Cell 7, 185–192 (2001).

    Article  CAS  Google Scholar 

  8. Butkus, M.E., Prundeanu, L.B. & Oliver, D.B. Translocon “pulling” of nascent SecM controls the duration of its translational pause and secretion-responsive secA regulation. J. Bacteriol. 185, 6719–6722 (2003).

    Article  CAS  Google Scholar 

  9. Chiba, S. et al. Recruitment of a species-specific translational arrest module to monitor different cellular processes. Proc. Natl. Acad. Sci. USA 108, 6073–6078 (2011).

    Article  CAS  Google Scholar 

  10. Yap, M.N. & Bernstein, H.D. The translational regulatory function of SecM requires the precise timing of membrane targeting. Mol. Microbiol. 81, 540–553 (2011).

    Article  CAS  Google Scholar 

  11. Muto, H., Nakatogawa, H. & Ito, K. Genetically encoded but nonpolypeptide prolyl-tRNA functions in the A site for SecM-mediated ribosomal stall. Mol. Cell 22, 545–552 (2006).

    Article  CAS  Google Scholar 

  12. Garza-Sánchez, F., Janssen, B.D. & Hayes, C.S. Prolyl-tRNA(Pro) in the A-site of SecM-arrested ribosomes inhibits the recruitment of transfer-messenger RNA. J. Biol. Chem. 281, 34258–34268 (2006).

    Article  Google Scholar 

  13. Gumbart, J., Schreiner, E., Wilson, D.N., Beckmann, R. & Schulten, K. Mechanisms of SecM-mediated stalling in the ribosome. Biophys. J. 103, 331–341 (2012).

    Article  CAS  Google Scholar 

  14. Xie, K. et al. Features of transmembrane segments that promote the lateral release from the translocase into the lipid phase. Biochemistry 46, 15153–15161 (2007).

    Article  CAS  Google Scholar 

  15. Yanagitani, K., Kimata, Y., Kadokura, H. & Kohno, K. Translational pausing ensures membrane targeting and cytoplasmic splicing of XBP1u mRNA. Science 331, 586–589 (2011).

    Article  CAS  Google Scholar 

  16. Yap, M.N. & Bernstein, H.D. The plasticity of a translation arrest motif yields insights into nascent polypeptide recognition inside the ribosome tunnel. Mol. Cell 34, 201–211 (2009).

    Article  CAS  Google Scholar 

  17. Nakatogawa, H. & Ito, K. The ribosomal exit tunnel functions as a discriminating gate. Cell 108, 629–636 (2002).

    Article  CAS  Google Scholar 

  18. San Millan, J.L., Boyd, D., Dalbey, R., Wickner, W. & Beckwith, J. Use of PhoA fusions to study the topology of the Escherichia coli inner membrane protein leader peptidase. J. Bacteriol. 171, 5536–5541 (1989).

    Article  CAS  Google Scholar 

  19. Dalbey, R.E. & Wickner, W. Leader peptidase of Escherichia coli: critical role of a small domain in membrane assembly. Science 235, 783–787 (1987).

    Article  CAS  Google Scholar 

  20. Chou, P.Y. & Fasman, G.D. Prediction of protein conformation. Biochemistry 13, 222–245 (1974).

    Article  CAS  Google Scholar 

  21. Nilsson, I.M. & von Heijne, G. Determination of the distance between the oligosaccharyltransferase active site and the endoplasmic reticulum membrane. J. Biol. Chem. 268, 5798–5801 (1993).

    CAS  PubMed  Google Scholar 

  22. Nilsson, I., Whitley, P. & von Heijne, G. The C-terminal ends of internal signal and signal-anchor sequences are positioned differently in the ER translocase. J. Cell Biol. 126, 1127–1132 (1994).

    Article  CAS  Google Scholar 

  23. Whitley, P., Nilsson, I.M. & von Heijne, G. A nascent secretory protein may traverse the ribosome/ER translocase complex as an extended chain. J. Biol. Chem. 271, 6241–6244 (1996).

    Article  CAS  Google Scholar 

  24. Mingarro, I., Nilsson, I., Whitley, P. & von Heijne, G. Different conformations of nascent polypeptides during translocation across the ER membrane. BioMC. Cell Biol. 1, 3–10 (2000).

    Article  CAS  Google Scholar 

  25. Bhushan, S. et al. SecM-stalled ribosomes adopt an altered geometry at the peptidyl transferase center. PLoS Biol. 9, e1000581 (2011).

    Article  CAS  Google Scholar 

  26. Menetret, J.F. et al. The structure of ribosome-channel complexes engaged in protein translocation. Mol. Cell 6, 1219–1232 (2000).

    Article  CAS  Google Scholar 

  27. Egea, P.F. & Stroud, R.M. Lateral opening of a translocon upon entry of protein suggests the mechanism of insertion into membranes. Proc. Natl. Acad. Sci. USA 107, 17182–17187 (2010).

    Article  CAS  Google Scholar 

  28. Van den Berg, B. et al. X-ray structure of a protein-conducting channel. Nature 427, 36–44 (2004).

    Article  CAS  Google Scholar 

  29. Johnston, S., Lee, J.H. & Ray, D.S. High-level expression of M13 gene II protein from an inducible polycistronic messenger RNA. Gene 34, 137–145 (1985).

    Article  CAS  Google Scholar 

  30. Dalbey, R.E. & Wickner, W. Leader peptidase catalyzes the release of exported proteins from the outer surface of the Escherichia coli plasma membrane. J. Biol. Chem. 260, 15925–15931 (1985).

    CAS  PubMed  Google Scholar 

  31. Dalbey, R.E. & Wickner, W. The role of the polar, carboxyl-terminal domain of Escherichia coli leader peptidase in its translocation across the plasma membrane. J. Biol. Chem. 261, 13844–13849 (1986).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank S. Bhushan and P.F. Egea for advice, and C. Lundin for technical assistance. This work was supported by grants from the European Research Council (ERC-2008-AdG 232648), the Swedish Foundation for Strategic Research, the Swedish Research Council, and the Swedish Cancer Foundation to G.v.H.

Author information

Authors and Affiliations

Authors

Contributions

N.I., R.H. and N.S. contributed to the study design, the experimental work and the writing of the paper. G.v.H. contributed to the study design and the writing of the paper.

Corresponding author

Correspondence to Gunnar von Heijne.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 and Supplementary Tables 1 and 2 (PDF 18284 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ismail, N., Hedman, R., Schiller, N. et al. A biphasic pulling force acts on transmembrane helices during translocon-mediated membrane integration. Nat Struct Mol Biol 19, 1018–1022 (2012). https://doi.org/10.1038/nsmb.2376

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2376

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing