Telomere length regulates TERRA levels through increased trimethylation of telomeric H3K9 and HP1α

An Erratum to this article was published on 05 February 2013

This article has been updated


Gene silencing by the repressive telomeric chromatin environment, referred to as telomere position effect (TPE), has been well characterized in yeast and depends on telomere length. However, proof of its existence at native human chromosome ends has remained elusive, mainly owing to the paucity of genes near telomeres. The discovery of TERRAs, the telomeric noncoding RNAs transcribed from subtelomeric promoters, paved the way to probing for telomere-length impact on physiological TPE. Using cell lines of various origins, we show that telomere elongation consistently represses TERRA expression. Repression is mediated by increased trimethylated H3K9 density at telomeres and by heterochromatin protein HP1α, with no detectable spreading of the marks beyond the telomeric tract, restricting human TPE to telomere transcription. Our data further support the existence of a negative-feedback mechanism in which longer TERRA molecules repress their own transcription upon telomere elongation.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Telomere elongation decreases TERRA molecule levels.
Figure 2: Telomere length negatively regulates TERRA expression.
Figure 3: H3K9me3 density is higher at elongated telomeres.
Figure 4: HP1α and H3K9me3 are involved in telomere length–dependent repression of TERRAs.
Figure 5: Telomere elongation increases UUAGGG levels at telomeres.
Figure 6: TERRA length increases in cells with elongated telomeres.
Figure 7: Enrichment of HP1α and H3K9me3 at telomeres follows the same dynamic as TERRA through the cell cycle.

Change history

  • 27 December 2012

    In the version of this article initially published, the colors in the key in Figure 7c were incorrectly reversed. Red should have represented telomeres and gray α-satellite regions. The error has been corrected in the HTML and PDF versions of the article.


  1. 1

    Ottaviani, A., Gilson, E. & Magdinier, F. Telomeric position effect: from the yeast paradigm to human pathologies? Biochimie 90, 93–107 (2008).

    CAS  Article  Google Scholar 

  2. 2

    Gehring, W.J., Klemenz, R., Weber, U. & Kloter, U. Functional analysis of the white gene of Drosophila by P-factor-mediated transformation. EMBO J. 3, 2077–2085 (1984).

    CAS  Article  Google Scholar 

  3. 3

    Hazelrigg, T., Levis, R. & Rubin, G.M. Transformation of white locus DNA in Drosophila: dosage compensation, zeste interaction, and position effects. Cell 36, 469–481 (1984).

    CAS  Article  Google Scholar 

  4. 4

    Perrini, B. et al. HP1 controls telomere capping, telomere elongation, and telomere silencing by two different mechanisms in Drosophila. Mol. Cell 15, 467–476 (2004).

    CAS  Article  Google Scholar 

  5. 5

    Gottschling, D.E., Aparicio, O.M., Billington, B.L. & Zakian, V.A. Position effect at S. cerevisiae telomeres: reversible repression of Pol II transcription. Cell 63, 751–762 (1990).

    CAS  Article  Google Scholar 

  6. 6

    Pryde, F.E. & Louis, E.J. Limitations of silencing at native yeast telomeres. EMBO J. 18, 2538–2550 (1999).

    CAS  Article  Google Scholar 

  7. 7

    Fourel, G., Revardel, E., Koering, C.E. & Gilson, E. Cohabitation of insulators and silencing elements in yeast subtelomeric regions. EMBO J. 18, 2522–2537 (1999).

    CAS  Article  Google Scholar 

  8. 8

    Nimmo, E.R., Cranston, G. & Allshire, R.C. Telomere-associated chromosome breakage in fission yeast results in variegated expression of adjacent genes. EMBO J. 13, 3801–3811 (1994).

    CAS  Article  Google Scholar 

  9. 9

    Ofir, R., Wong, A.C., McDermid, H.E., Skorecki, K.L. & Selig, S. Position effect of human telomeric repeats on replication timing. Proc. Natl. Acad. Sci. USA 96, 11434–11439 (1999).

    CAS  Article  Google Scholar 

  10. 10

    Lou, Z. et al. Telomere length regulates ISG15 expression in human cells. Aging (Albany NY) 1, 608–621 (2009).

    CAS  Article  Google Scholar 

  11. 11

    Baur, J.A., Zou, Y., Shay, J.W. & Wright, W.E. Telomere position effect in human cells. Science 292, 2075–2077 (2001).

    CAS  Article  Google Scholar 

  12. 12

    Koering, C.E. et al. Human telomeric position effect is determined by chromosomal context and telomeric chromatin integrity. EMBO Rep. 3, 1055–1061 (2002).

    CAS  Article  Google Scholar 

  13. 13

    Tennen, R.I., Bua, D.J., Wright, W.E. & Chua, K.F. SIRT6 is required for maintenance of telomere position effect in human cells. Nat. Commun. 2, 433 (2011).

    Article  Google Scholar 

  14. 14

    Nergadze, S.G. et al. CpG-island promoters drive transcription of human telomeres. RNA 15, 2186–2194 (2009).

    CAS  Article  Google Scholar 

  15. 15

    Azzalin, C.M., Reichenbach, P., Khoriauli, L., Giulotto, E. & Lingner, J. Telomeric repeat containing RNA and RNA surveillance factors at mammalian chromosome ends. Science 318, 798–801 (2007).

    CAS  Article  Google Scholar 

  16. 16

    Redon, S., Reichenbach, P. & Lingner, J. The non-coding RNA TERRA is a natural ligand and direct inhibitor of human telomerase. Nucleic Acids Res. 38, 5797–5806 (2010).

    CAS  Article  Google Scholar 

  17. 17

    Schoeftner, S. & Blasco, M.A. Developmentally regulated transcription of mammalian telomeres by DNA-dependent RNA polymerase II. Nat. Cell Biol. 10, 228–236 (2008).

    CAS  Article  Google Scholar 

  18. 18

    Deng, Z., Norseen, J., Wiedmer, A., Riethman, H. & Lieberman, P.M. TERRA RNA binding to TRF2 facilitates heterochromatin formation and ORC recruitment at telomeres. Mol. Cell 35, 403–413 (2009).

    CAS  Article  Google Scholar 

  19. 19

    Porro, A., Feuerhahn, S., Reichenbach, P. & Lingner, J. Molecular dissection of telomeric repeat-containing RNA biogenesis unveils the presence of distinct and multiple regulatory pathways. Mol. Cell. Biol. 30, 4808–4817 (2010).

    CAS  Article  Google Scholar 

  20. 20

    Arnoult, N. et al. Replication timing of human telomeres is chromosome arm-specific, influenced by subtelomeric structures and connected to nuclear localization. PLoS Genet. 6, e1000920 (2010).

    Article  Google Scholar 

  21. 21

    Cristofari, G. & Lingner, J. Telomere length homeostasis requires that telomerase levels are limiting. EMBO J. 25, 565–574 (2006).

    CAS  Article  Google Scholar 

  22. 22

    Takai, K.K., Hooper, S., Blackwood, S., Gandhi, R. & de Lange, T. In vivo stoichiometry of shelterin components. J. Biol. Chem. 285, 1457–1467 (2010).

    CAS  Article  Google Scholar 

  23. 23

    Mattiussi, M., Tilman, G., Lenglez, S. & Decottignies, A. Human telomerase represses ROS-dependent cellular responses to tumor necrosis factor-α without affecting NF-κB activation. Cell. Signal. 24, 708–717 (2012).

    CAS  Article  Google Scholar 

  24. 24

    Déjardin, J. & Kingston, R.E. Purification of proteins associated with specific genomic Loci. Cell 136, 175–186 (2009).

    Article  Google Scholar 

  25. 25

    Greenwood, J. & Cooper, J.P. Non-coding telomeric and subtelomeric transcripts are differentially regulated by telomeric and heterochromatin assembly factors in fission yeast. Nucleic Acids Res. 40, 2956–2963 (2012).

    CAS  Article  Google Scholar 

  26. 26

    Shankaranarayana, G.D., Motamedi, M.R., Moazed, D. & Grewal, S.I. Sir2 regulates histone H3 lysine 9 methylation and heterochromatin assembly in fission yeast. Curr. Biol. 13, 1240–1246 (2003).

    CAS  Article  Google Scholar 

  27. 27

    Rosenfeld, J.A. et al. Determination of enriched histone modifications in non-genic portions of the human genome. BMC Genomics 10, 143 (2009).

    Article  Google Scholar 

  28. 28

    O'Sullivan, R.J., Kubicek, S., Schreiber, S.L. & Karlseder, J. Reduced histone biosynthesis and chromatin changes arising from a damage signal at telomeres. Nat. Struct. Mol. Biol. 17, 1218–1225 (2010).

    CAS  Article  Google Scholar 

  29. 29

    García -Cao, M., O'Sullivan, R., Peters, A.H., Jenuwein, T. & Blasco, M.A. Epigenetic regulation of telomere length in mammalian cells by the Suv39h1 and Suv39h2 histone methyltransferases. Nat. Genet. 36, 94–99 (2004).

    Article  Google Scholar 

  30. 30

    Benetti, R., Garcia-Cao, M. & Blasco, M.A. Telomere length regulates the epigenetic status of mammalian telomeres and subtelomeres. Nat. Genet. 39, 243–250 (2007).

    CAS  Article  Google Scholar 

  31. 31

    Benetti, R., Schoeftner, S., Munoz, P. & Blasco, M.A. Role of TRF2 in the assembly of telomeric chromatin. Cell Cycle 7, 3461–3468 (2008).

    CAS  Article  Google Scholar 

  32. 32

    Deng, Z., Dheekollu, J., Broccoli, D., Dutta, A. & Lieberman, P.M. The origin recognition complex localizes to telomere repeats and prevents telomere-circle formation. Curr. Biol. 17, 1989–1995 (2007).

    CAS  Article  Google Scholar 

  33. 33

    Ning, Y. et al. Telomere length and the expression of natural telomeric genes in human fibroblasts. Hum. Mol. Genet. 12, 1329–1336 (2003).

    CAS  Article  Google Scholar 

  34. 34

    Sharma, G.G. et al. Human heterochromatin protein 1 isoforms HP1(Hsα) and HP1(Hsβ) interfere with hTERT-telomere interactions and correlate with changes in cell growth and response to ionizing radiation. Mol. Cell. Biol. 23, 8363–8376 (2003).

    CAS  Article  Google Scholar 

  35. 35

    Flynn, R.L. et al. TERRA and hnRNPA1 orchestrate an RPA-to-POT1 switch on telomeric single-stranded DNA. Nature 471, 532–536 (2011).

    CAS  Article  Google Scholar 

  36. 36

    Muchardt, C. et al. Coordinated methyl and RNA binding is required for heterochromatin localization of mammalian HP1alpha. EMBO Rep. 3, 975–981 (2002).

    CAS  Article  Google Scholar 

  37. 37

    Maison, C. et al. SUMOylation promotes de novo targeting of HP1α to pericentric heterochromatin. Nat. Genet. 43, 220–227 (2011).

    CAS  Article  Google Scholar 

  38. 38

    Iglesias, N. et al. Subtelomeric repetitive elements determine TERRA regulation by Rap1/Rif and Rap1/Sir complexes in yeast. EMBO Rep. 12, 587–593 (2011).

    CAS  Article  Google Scholar 

  39. 39

    Caslini, C., Connelly, J.A., Serna, A., Broccoli, D. & Hess, J.L. MLL associates with telomeres and regulates telomeric repeat-containing RNA transcription. Mol. Cell. Biol. 29, 4519–4526 (2009).

    CAS  Article  Google Scholar 

  40. 40

    Esnault, G. et al. Transcription factor CTF1 acts as a chromatin domain boundary that shields human telomeric genes from silencing. Mol. Cell. Biol. 29, 2409–2418 (2009).

    CAS  Article  Google Scholar 

  41. 41

    Donze, D. & Kamakaka, R.T. RNA polymerase III and RNA polymerase II promoter complexes are heterochromatin barriers in Saccharomyces cerevisiae. EMBO J. 20, 520–531 (2001).

    CAS  Article  Google Scholar 

  42. 42

    Deng, Z., Campbell, A.E. & Lieberman, P.M. TERRA, CpG methylation and telomere heterochromatin: lessons from ICF syndrome cells. Cell Cycle 9, 69–74 (2010).

    CAS  Article  Google Scholar 

  43. 43

    Tilman, G. et al. Subtelomeric DNA hypomethylation is not required for telomeric sister chromatid exchanges in ALT cells. Oncogene 28, 1682–1693 (2009).

    CAS  Article  Google Scholar 

  44. 44

    Zhang, L.F. et al. Telomeric RNAs mark sex chromosomes in stem cells. Genetics 182, 685–698 (2009).

    CAS  Article  Google Scholar 

  45. 45

    Schoeftner, S. et al. Telomere shortening relaxes X chromosome inactivation and forces global transcriptome alterations. Proc. Natl. Acad. Sci. USA 106, 19393–19398 (2009).

    CAS  Article  Google Scholar 

  46. 46

    Arnoult, N., Saintome, C., Ourliac-Garnier, I., Riou, J.F. & Londono-Vallejo, A. Human POT1 is required for efficient telomere C-rich strand replication in the absence of WRN. Genes Dev. 23, 2915–2924 (2009).

    CAS  Article  Google Scholar 

  47. 47

    Willard, H.F., Smith, K.D. & Sutherland, J. Isolation and characterization of a major tandem repeat family from the human X chromosome. Nucleic Acids Res. 11, 2017–2033 (1983).

    CAS  Article  Google Scholar 

  48. 48

    Draskovic, I. et al. Probing PML body function in ALT cells reveals spatiotemporal requirements for telomere recombination. Proc. Natl. Acad. Sci. USA 106, 15726–15731 (2009).

    CAS  Article  Google Scholar 

Download references


We are grateful to J. Lingner and G. Cristofari (École polytechnique fédérale de Lausanne, Lausanne, Switzerland), T. de Lange (The Rockefeller University, New York, New York, USA), F. Fuks (Université Libre de Bruxelles, Brussels, Belgium), H. Antoine-Poirel (Université catholique de Louvain, Brussels, Belgium) and C. Heirman (Vrije Universiteit Brussel, Brussels, Belgium) for the generous gift of cell lines and plasmids. We thank G. Tilman, A. Loriot and C. De Smet for useful comments on the manuscript and N. Dauguet for technical assistance with flow cytometry. We warmly thank the de Duve Institute for constant support. This work was supported by the Belgian Fonds National de la Recherche Scientifique: Mandat d'Impulsion Scientifique MIS F.4511.09 (to N.A. and A.D.) and by the Fonds pour la formation à la Recherche dans l'Industrie et dans l'Agriculture (FRIA) fellowship FNRS 1.E127.10 (to A.V.B.).

Author information




A.D. and N.A. conceived and planned the project, and wrote the manuscript. N.A. and A.V.B. performed the experiments. N.A., A.V.B. and A.D. analyzed the results.

Corresponding author

Correspondence to Anabelle Decottignies.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 and Supplementary Tables 1 and 2 (PDF 4123 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Arnoult, N., Van Beneden, A. & Decottignies, A. Telomere length regulates TERRA levels through increased trimethylation of telomeric H3K9 and HP1α. Nat Struct Mol Biol 19, 948–956 (2012).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing