Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Allosteric control of the ribosome by small-molecule antibiotics

Abstract

Protein synthesis is targeted by numerous, chemically distinct antibiotics that bind and inhibit key functional centers of the ribosome. Using single-molecule imaging and X-ray crystallography, we show that the aminoglycoside neomycin blocks aminoacyl–transfer RNA (aa-tRNA) selection and translocation as well as ribosome recycling by binding to helix 69 (H69) of 23S ribosomal RNA within the large subunit of the Escherichia coli ribosome. There, neomycin prevents the remodeling of intersubunit bridges that normally accompanies the process of subunit rotation to stabilize a partially rotated ribosome configuration in which peptidyl (P)-site tRNA is constrained in a previously unidentified hybrid position. Direct measurements show that this neomycin-stabilized intermediate is incompatible with the translation factor binding that is required for distinct protein synthesis reactions. These findings reveal the functional importance of reversible intersubunit rotation to the translation mechanism and shed new light on the allosteric control of ribosome functions by small-molecule antibiotics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Neomycin inhibits ribosome functions in vitro.
Figure 2: Neomycin stabilizes an intermediate conformation of the ribosome.
Figure 3: Neomycin contacts within H69 of 23S rRNA and bridging interactions with h45 of 16S rRNA induce global rearrangements in the 70S ribosome.
Figure 4: Position of tRNAPhe in the intermediate-rotated and neomycin-bound ribosome.
Figure 5: The intermediate ribosome configuration is incompatible with productive EF-G and EF-Tu binding.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

References

  1. Gale, E.F., Cundliffe, E., Reynolds, P.E., Richmond, M.H. & Waring, M.J. The Molecular Basis of Antibiotic Action, 2nd edn. (John Wiley & Sons Ltd., 1981).

  2. Wilson, D.N. The A–Z of bacterial translation inhibitors. Crit. Rev. Biochem. Mol. Biol. 44, 393–433 (2009).

    Article  CAS  Google Scholar 

  3. Blanchard, S.C., Cooperman, B.S. & Wilson, D.N. Probing translation with small-molecule inhibitors. Chem. Biol. 17, 633–645 (2010).

    Article  CAS  Google Scholar 

  4. Poehlsgaard, J. & Douthwaite, S. The bacterial ribosome as a target for antibiotics. Nat. Rev. Microbiol. 3, 870–881 (2005).

    Article  CAS  Google Scholar 

  5. Tenson, T. & Mankin, A. Antibiotics and the ribosome. Mol. Microbiol. 59, 1664–1677 (2006).

    Article  CAS  Google Scholar 

  6. Nathan, C. Antibiotics at the crossroads. Nature 431, 899–902 (2004).

    Article  CAS  Google Scholar 

  7. von Nussbaum, F., Brands, M., Hinzen, B., Weigand, S. & Habich, D. Antibacterial natural products in medicinal chemistry—exodus or revival? Angew. Chem. Int. Edn. Engl. 45, 5072–5129 (2006).

    Article  CAS  Google Scholar 

  8. Fischbach, M.A. & Walsh, C.T. Antibiotics for emerging pathogens. Science 325, 1089–1093 (2009).

    Article  CAS  Google Scholar 

  9. Llano-Sotelo, B., Hickerson, R.P., Lancaster, L., Noller, H.F. & Mankin, A.S. Fluorescently labeled ribosomes as a tool for analyzing antibiotic binding. RNA 15, 1597–1604 (2009).

    Article  CAS  Google Scholar 

  10. David-Eden, H., Mankin, A.S. & Mandel-Gutfreund, Y. Structural signatures of antibiotic binding sites on the ribosome. Nucleic Acids Res. 38, 5982–5994 (2010).

    Article  CAS  Google Scholar 

  11. Rodnina, M.V. et al. GTPases mechanisms and functions of translation factors on the ribosome. Biol. Chem. 381, 377–387 (2000).

    Article  CAS  Google Scholar 

  12. Fourmy, D., Recht, M.I., Blanchard, S.C. & Puglisi, J.D. Structure of the A site of Escherichia coli 16S ribosomal RNA complexed with an aminoglycoside antibiotic. Science 274, 1367–1371 (1996).

    Article  CAS  Google Scholar 

  13. Schmeing, T.M. & Ramakrishnan, V. What recent ribosome structures have revealed about the mechanism of translation. Nature 461, 1234–1242 (2009).

    Article  CAS  Google Scholar 

  14. Zaher, H.S. & Green, R. Fidelity at the molecular level: lessons from protein synthesis. Cell 136, 746–762 (2009).

    Article  CAS  Google Scholar 

  15. Davies, J., Gorini, L. & Davis, B.D. Misreading of RNA codewords induced by aminoglycoside antibiotics. Mol. Pharmacol. 1, 93–106 (1965).

    CAS  Google Scholar 

  16. Kurland, C.G. Translational accuracy and the fitness of bacteria. Annu. Rev. Genet. 26, 29–50 (1992).

    Article  CAS  Google Scholar 

  17. Feldman, M.B., Terry, D.S., Altman, R.B. & Blanchard, S.C. Aminoglycoside activity observed on single pre-translocation ribosome complexes. Nat. Chem. Biol. 6, 54–62 (2010).

    Article  CAS  Google Scholar 

  18. Hirokawa, G. et al. Post-termination complex disassembly by ribosome recycling factor, a functional tRNA mimic. EMBO J. 21, 2272–2281 (2002).

    Article  CAS  Google Scholar 

  19. Davies, J. & Davis, B.D. Misreading of ribonucleic acid code words induced by aminoglycoside antibiotics. The effect of drug concentration. J. Biol. Chem. 243, 3312–3316 (1968).

    CAS  PubMed  Google Scholar 

  20. Dahlberg, A.E., Horodyski, F. & Keller, P. Interaction of neomycin with ribosomes and ribosomal ribonucleic acid. Antimicrob. Agents Chemother. 13, 331–339 (1978).

    Article  CAS  Google Scholar 

  21. Borovinskaya, M.A. et al. Structural basis for aminoglycoside inhibition of bacterial ribosome recycling. Nat. Struct. Mol. Biol. 14, 727–732 (2007).

    Article  CAS  Google Scholar 

  22. Munro, J.B., Sanbonmatsu, K.Y., Spahn, C.M. & Blanchard, S.C. Navigating the ribosome's metastable energy landscape. Trends Biochem. Sci. 34, 390–400 (2009).

    Article  CAS  Google Scholar 

  23. Valle, M. et al. Locking and unlocking of ribosomal motions. Cell 114, 123–134 (2003).

    Article  CAS  Google Scholar 

  24. Frank, J. & Gonzalez, R.L. Jr. Structure and dynamics of a processive Brownian motor: the translating ribosome. Annu. Rev. Biochem. 79, 381–412 (2010).

    Article  CAS  Google Scholar 

  25. Ortiz-Meoz, R.F. & Green, R. Helix 69 is key for uniformity during substrate selection on the ribosome. J. Biol. Chem. 286, 25604–25610 (2011).

    Article  CAS  Google Scholar 

  26. Bulkley, D., Johnson, F. & Steitz, T.A. The antibiotic thermorubin inhibits protein synthesis by binding to inter-subunit bridge B2a of the ribosome. J. Mol. Biol. 416, 571–578 (2012).

    Article  CAS  Google Scholar 

  27. Dunkle, J.A. et al. Structures of the bacterial ribosome in classical and hybrid states of tRNA binding. Science 332, 981–984 (2011).

    Article  CAS  Google Scholar 

  28. Rodnina, M.V. & Wintermeyer, W. Fidelity of aminoacyl-tRNA selection on the ribosome: kinetic and structural mechanisms. Annu. Rev. Biochem. 70, 415–435 (2001).

    Article  CAS  Google Scholar 

  29. Geggier, P. et al. Conformational sampling of aminoacyl-tRNA during selection on the bacterial ribosome. J. Mol. Biol. 399, 576–595 (2010).

    Article  CAS  Google Scholar 

  30. Ogle, J.M. & Ramakrishnan, V. Structural insights into translational fidelity. Annu. Rev. Biochem. 74, 129–177 (2005).

    Article  CAS  Google Scholar 

  31. Recht, M.I., Douthwaite, S. & Puglisi, J.D. Basis for prokaryotic specificity of action of aminoglycoside antibiotics. EMBO J. 18, 3133–3138 (1999).

    Article  CAS  Google Scholar 

  32. Munro, J.B., Wasserman, M.R., Altman, R.B., Wang, L. & Blanchard, S.C. Correlated conformational events in EF-G and the ribosome regulate translocation. Nat. Struct. Mol. Biol. 17, 1470–1477 (2010).

    Article  CAS  Google Scholar 

  33. Hirokawa, G. et al. The role of ribosome recycling factor in dissociation of 70S ribosomes into subunits. RNA 11, 1317–1328 (2005).

    Article  CAS  Google Scholar 

  34. Munro, J.B., Altman, R.B., Tung, C.S., Sanbonmatsu, K.Y. & Blanchard, S.C. A fast dynamic mode of the EF-G–bound ribosome. EMBO J. 29, 770–781 (2010).

    Article  CAS  Google Scholar 

  35. Fei, J., Kosuri, P., MacDougall, D.D. & Gonzalez, R.L. Jr. Coupling of ribosomal L1 stalk and tRNA dynamics during translation elongation. Mol. Cell 30, 348–359 (2008).

    Article  CAS  Google Scholar 

  36. Munro, J.B. et al. Spontaneous formation of the unlocked state of the ribosome is a multistep process. Proc. Natl. Acad. Sci. USA 107, 709–714 (2010).

    Article  CAS  Google Scholar 

  37. Zhang, W., Dunkle, J.A. & Cate, J.H. Structures of the ribosome in intermediate states of ratcheting. Science 325, 1014–1017 (2009).

    Article  CAS  Google Scholar 

  38. Sternberg, S.H., Fei, J., Prywes, N., McGrath, K.A. & Gonzalez, R.L. Jr. Translation factors direct intrinsic ribosome dynamics during translation termination and ribosome recycling. Nat. Struct. Mol. Biol. 16, 861–868 (2009).

    Article  CAS  Google Scholar 

  39. Laurberg, M. et al. Structural basis for translation termination on the 70S ribosome. Nature 454, 852–857 (2008).

    Article  CAS  Google Scholar 

  40. Petry, S., Weixlbaumer, A. & Ramakrishnan, V. The termination of translation. Curr. Opin. Struct. Biol. 18, 70–77 (2008).

    Article  CAS  Google Scholar 

  41. Cornish, P.V. et al. Following movement of the L1 stalk between three functional states in single ribosomes. Proc. Natl. Acad. Sci. USA 106, 2571–2576 (2009).

    Article  CAS  Google Scholar 

  42. Fei, J. et al. Allosteric collaboration between elongation factor G and the ribosomal L1 stalk directs tRNA movements during translation. Proc. Natl. Acad. Sci. USA 106, 15702–15707 (2009).

    Article  CAS  Google Scholar 

  43. Peske, F., Savelsbergh, A., Katunin, V.I., Rodnina, M.V. & Wintermeyer, W. Conformational changes of the small ribosomal subunit during elongation factor G-dependent. tRNA-mRNA translocation. J. Mol. Biol. 343, 1183–1194 (2004).

    Article  CAS  Google Scholar 

  44. Stanley, R.E., Blaha, G., Grodzicki, R.L., Strickler, M.D. & Steitz, T.A. The structures of the anti-tuberculosis antibiotics viomycin and capreomycin bound to the 70S ribosome. Nat. Struct. Mol. Biol. 17, 289–293 (2010).

    Article  CAS  Google Scholar 

  45. Cornish, P.V., Ermolenko, D.N., Noller, H.F. & Ha, T. Spontaneous intersubunit rotation in single ribosomes. Mol. Cell 30, 578–588 (2008).

    Article  CAS  Google Scholar 

  46. Ermolenko, D.N. et al. The antibiotic viomycin traps the ribosome in an intermediate state of translocation. Nat. Struct. Mol. Biol. 14, 493–497 (2007).

    Article  CAS  Google Scholar 

  47. Jin, H., Kelley, A.C. & Ramakrishnan, V. Crystal structure of the hybrid state of ribosome in complex with the guanosine triphosphatase release factor 3. Proc. Natl. Acad. Sci. USA 108, 15798–15803 (2011).

    Article  CAS  Google Scholar 

  48. Ratje, A.H. et al. Head swivel on the ribosome facilitates translocation by means of intra-subunit tRNA hybrid sites. Nature 468, 713–716 (2010).

    Article  CAS  Google Scholar 

  49. Wang, L., Altman, R.B. & Blanchard, S.C. Insights into the molecular determinants of EF-G catalyzed translocation. RNA 17, 2189–2200 (2011).

    Article  CAS  Google Scholar 

  50. Chan, Y.L. & Wool, I.G. The integrity of the sarcin/ricin domain of 23 S ribosomal RNA is not required for elongation factor-independent peptide synthesis. J. Mol. Biol. 378, 12–19 (2008).

    Article  CAS  Google Scholar 

  51. Whitford, P.C. et al. Excited states of ribosome translocation revealed through integrative molecular modeling. Proc. Natl. Acad. Sci. USA 108, 18943–18948 (2011).

    Article  CAS  Google Scholar 

  52. Gao, Y.G. et al. The structure of the ribosome with elongation factor G trapped in the posttranslocational state. Science 326, 694–699 (2009).

    Article  CAS  Google Scholar 

  53. Schmeing, T.M. et al. The crystal structure of the ribosome bound to EF-Tu and aminoacyl-tRNA. Science 326, 688–694 (2009).

    Article  CAS  Google Scholar 

  54. Aitken, C.E. & Puglisi, J.D. Following the intersubunit conformation of the ribosome during translation in real time. Nat. Struct. Mol. Biol. 17, 793–800 (2010).

    Article  CAS  Google Scholar 

  55. Fei, J., Richard, A.C., Bronson, J.E. & Gonzalez, R.L. Jr. Transfer RNA–mediated regulation of ribosome dynamics during protein synthesis. Nat. Struct. Mol. Biol. 18, 1043–1051 (2011).

    Article  CAS  Google Scholar 

  56. Ruggero, D. & Pandolfi, P.P. Does the ribosome translate cancer? Nat. Rev. Cancer 3, 179–192 (2003).

    Article  CAS  Google Scholar 

  57. Andersson, D.I., Bohman, K., Isaksson, L.A. & Kurland, C.G. Translation rates and misreading characteristics of rpsD mutants in Escherichia coli. Mol. Gen. Genet. 187, 467–472 (1982).

    Article  CAS  Google Scholar 

  58. O'Connor, M., Goringer, H.U. & Dahlberg, A.E. A ribosomal ambiguity mutation in the 530 loop of E. coli 16S rRNA. Nucleic Acids Res. 20, 4221–4227 (1992).

    Article  CAS  Google Scholar 

  59. Davis, B.D. Mechanism of bactericidal action of aminoglycosides. Microbiol. Rev. 51, 341–350 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Hobbie, S.N. et al. Binding of neomycin-class aminoglycoside antibiotics to mutant ribosomes with alterations in the A site of 16S rRNA. Antimicrob. Agents Chemother. 50, 1489–1496 (2006).

    Article  CAS  Google Scholar 

  61. The PyMOL molecular graphics system. Version 1.3 (Schrödinger, LLC, 2002).

  62. Yin, J., Lin, A.J., Golan, D.E. & Walsh, C.T. Site-specific protein labeling by Sfp phosphopantetheinyl transferase. Nat. Protoc. 1, 280–285 (2006).

    Article  CAS  Google Scholar 

  63. Cukras, A.R., Southworth, D.R., Brunelle, J.L., Culver, G.M. & Green, R. Ribosomal proteins S12 and S13 function as control elements for translocation of the mRNA:tRNA complex. Mol. Cell 12, 321–328 (2003).

    Article  CAS  Google Scholar 

  64. Dave, R., Terry, D.S., Munro, J.B. & Blanchard, S.C. Mitigating unwanted photophysical processes for improved single-molecule fluorescence imaging. Biophys. J. 96, 2371–2381 (2009).

    Article  CAS  Google Scholar 

  65. Munro, J.B., Altman, R.B., O'Connor, N. & Blanchard, S.C. Identification of two distinct hybrid state intermediates on the ribosome. Mol. Cell 25, 505–517 (2007).

    Article  CAS  Google Scholar 

  66. Blaha, G. et al. Preparation of functional ribosomal complexes and effect of buffer conditions on tRNA positions observed by cryoelectron microscopy. Methods Enzymol. 317, 292–309 (2000).

    Article  CAS  Google Scholar 

  67. Kabsch, W. XDS. Acta Crystallogr. D Biol. Crystallogr. 66, 125–132 (2010).

    Article  CAS  Google Scholar 

  68. Adams, P.D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).

    Article  CAS  Google Scholar 

  69. Emsley, P., Lohkamp, B., Scott, W.G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).

    Article  CAS  Google Scholar 

  70. Chen, V.B., Davis, I.W. & Richardson, D.C. KING (Kinemage, Next Generation): a versatile interactive molecular and scientific visualization program. Protein Sci. 18, 2403–2409 (2009).

    Article  CAS  Google Scholar 

  71. Saenger, W. Principles of Nucleic Acid Structure (Springer-Verlag, New York, 1984).

  72. Qin, F., Auerbach, A. & Sachs, F. Estimating single-channel kinetic parameters from idealized patch-clamp data containing missed events. Biophys. J. 70, 264–280 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. Green (Johns Hopkins University) for providing the S13 knockout mouse strain, T. Suzuki (University of Tokyo) for providing the pKK3535 ribosome plasmids, K. Hamadani (University of California, Berkeley) for the RRF expression vector and M. O'Connor (University of Missouri-Kansas City) for helpful discussions throughout the course of this work. We also acknowledge helpful discussions and insights provided by all members of the Blanchard and Cate laboratories and J. Headd (Lawrence Berkeley National Laboratory) for help with PHENIX refinement. This work was supported by the US National Institutes of Health (2R01GM079238 to S.C.B., 1R01GM65050 to J.H.D.C. and National Cancer Institute grant CA92584 for the SIBYLS and 8.3.1 beamlines at the Advanced Light Source (ALS), Lawrence Berkeley National Laboratory), the Human Frontiers in Science Program (RGY0088), the National Science Foundation (0644129) and the US Department of Energy (DE-AC0376SF00098 for the SIBYLS and 8.3.1 beamlines at the ALS, Lawrence Berkeley National Laboratory). M.B.F. is a trainee in the Weill Cornell/Rockefeller University/Sloan-Kettering Tri-Institutional MD/PhD Program supported by US National Institutes of Health Medical Scientist Training Program grant GM07739. M.R.W. is supported by US National Institutes of Health National Research Service Award fellowship 5F31DC012026-02.

Author information

Authors and Affiliations

Authors

Contributions

L.W. and M.R.W. prepared dye-labeled ribosomes, tRNAs and translation factors and performed the smFRET imaging and analyzed the results. A.P. crystallized, collected, processed and refined X-ray data. L.W. and M.B.F. performed and analyzed bulk functional assays. L.W. and A.P. made the figures. R.B.A. prepared reagents crucial for smFRET experiments. S.C.B. and J.H.D.C. designed the study. All authors discussed the results and contributed to the writing of the manuscript.

Corresponding authors

Correspondence to Jamie H Doudna Cate or Scott C Blanchard.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5. (PDF 893 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, L., Pulk, A., Wasserman, M. et al. Allosteric control of the ribosome by small-molecule antibiotics. Nat Struct Mol Biol 19, 957–963 (2012). https://doi.org/10.1038/nsmb.2360

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2360

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing