Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

DDR complex facilitates global association of RNA polymerase V to promoters and evolutionarily young transposons

Abstract

The plant-specific DNA-dependent RNA polymerase V (Pol V) evolved from Pol II to function in an RNA-directed DNA methylation pathway. Here, we have identified targets of Pol V in Arabidopsis thaliana on a genome-wide scale using ChIP-seq of NRPE1, the largest catalytic subunit of Pol V. We found that Pol V is enriched at promoters and evolutionarily recent transposons. This localization pattern is highly correlated with Pol V–dependent DNA methylation and small RNA accumulation. We also show that genome-wide chromatin association of Pol V is dependent on all members of a putative chromatin-remodeling complex termed DDR. Our study presents a genome-wide view of Pol V occupancy and sheds light on the mechanistic basis of Pol V localization. Furthermore, these findings suggest a role for Pol V and RNA-directed DNA methylation in genome surveillance and in responding to genome evolution.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Identification of NRPE1-enriched sites by ChIP-seq and characterization of epigenetic marks at those sites.
Figure 2: The DDR complex is required for stable association of Pol V with chromatin.
Figure 3: NRPE1 is enriched at gene promoters.
Figure 4: NRPE1 is enriched at the intersection of promoters and transposons.
Figure 5: Loss of NRPE1 causes changes in protein-coding gene expression.
Figure 6: NRPE1 is enriched at transposons that are relatively new in the A. thaliana genome.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

References

  1. Law, J.A. & Jacobsen, S.E. Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat. Rev. Genet. 11, 204–220 (2010).

    Article  CAS  Google Scholar 

  2. Cokus, S.J. et al. Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature 452, 215–219 (2008).

    Article  CAS  Google Scholar 

  3. Haag, J.R. & Pikaard, C.S. Multisubunit RNA polymerases IV and V: purveyors of non-coding RNA for plant gene silencing. Nat. Rev. Mol. Cell Biol. 12, 483–492 (2011).

    Article  CAS  Google Scholar 

  4. Mosher, R.A., Schwach, F., Studholme, D. & Baulcombe, D.C. PolIVb influences RNA-directed DNA methylation independently of its role in siRNA biogenesis. Proc. Natl. Acad. Sci. USA 105, 3145–3150 (2008).

    Article  CAS  Google Scholar 

  5. Wierzbicki, A.T., Haag, J.R. & Pikaard, C.S. Noncoding transcription by RNA polymerase Pol IVb/Pol V mediates transcriptional silencing of overlapping and adjacent genes. Cell 135, 635–648 (2008).

    Article  CAS  Google Scholar 

  6. Kanno, T. et al. Involvement of putative SNF2 chromatin remodeling protein DRD1 in RNA-directed DNA methylation. Curr. Biol. 14, 801–805 (2004).

    Article  CAS  Google Scholar 

  7. Kanno, T. et al. A structural-maintenance-of-chromosomes hinge domain-containing protein is required for RNA-directed DNA methylation. Nat. Genet. 40, 670–675 (2008).

    Article  CAS  Google Scholar 

  8. Ausin, I., Mockler, T.C., Chory, J. & Jacobsen, S.E. IDN1 and IDN2 are required for de novo DNA methylation in Arabidopsis thaliana. Nat. Struct. Mol. Biol. 16, 1325–1327 (2009).

    Article  CAS  Google Scholar 

  9. Law, J.A. et al. A protein complex required for polymerase V transcripts and RNA- directed DNA methylation in Arabidopsis. Curr. Biol. 20, 951–956 (2010).

    Article  CAS  Google Scholar 

  10. Gao, Z. et al. An RNA polymerase II- and AGO4-associated protein acts in RNA-directed DNA methylation. Nature 465, 106–109 (2010).

    Article  CAS  Google Scholar 

  11. Zheng, B. et al. Intergenic transcription by RNA polymerase II coordinates Pol IV and Pol V in siRNA-directed transcriptional gene silencing in Arabidopsis. Genes Dev. 23, 2850–2860 (2009).

    Article  CAS  Google Scholar 

  12. El-Shami, M. et al. Reiterated WG/GW motifs form functionally and evolutionarily conserved ARGONAUTE-binding platforms in RNAi-related components. Genes Dev. 21, 2539–2544 (2007).

    Article  CAS  Google Scholar 

  13. Rowley, M.J., Avrutsky, M.I., Sifuentes, C.J., Pereira, L. & Wierzbicki, A.T. Independent chromatin binding of ARGONAUTE4 and SPT5L/KTF1 mediates transcriptional gene silencing. PLoS Genet. 7, e1002120 (2011).

    Article  CAS  Google Scholar 

  14. Huang, L. et al. An atypical RNA polymerase involved in RNA silencing shares small subunits with RNA polymerase II. Nat. Struct. Mol. Biol. 16, 91–93 (2009).

    Article  CAS  Google Scholar 

  15. Wierzbicki, A.T., Ream, T.S., Haag, J.R. & Pikaard, C.S. RNA polymerase V transcription guides ARGONAUTE4 to chromatin. Nat. Genet. 41, 630–634 (2009).

    Article  CAS  Google Scholar 

  16. Lee, T.F. et al. RNA polymerase V-dependent small RNAs in Arabidopsis originate from small, intergenic loci including most SINE repeats. Epigenetics 7, 798–795 (2012).

    Article  Google Scholar 

  17. Ausin, I. et al. An IDN2-containing complex involved in RNA-directed DNA methylation in Arabidopsis. Proc. Natl. Acad. Sci. USA 109, 8374–8381 (2012).

    Article  CAS  Google Scholar 

  18. Zhang, X., Bernatavichute, Y.V., Cokus, S., Pellegrini, M. & Jacobsen, S.E. Genome-wide analysis of mono-, di- and trimethylation of histone H3 lysine 4 in Arabidopsis thaliana. Genome Biol. 10, R62 (2009).

    Article  Google Scholar 

  19. Slotkin, R., Nuthikattu, S. & Jiang, N. The impact of transposable elements on gene and genome evolution, in Plant Genome Diversity Vol. 1 (ed. Wendel, J.F.) Ch. 3, 35–55 (Springer Wien, 2012).

  20. Lisch, D. Epigenetic regulation of transposable elements in plants. Annu. Rev. Plant Biol. 60, 43–66 (2009).

    Article  CAS  Google Scholar 

  21. Hollister, J.D. & Gaut, B.S. Epigenetic silencing of transposable elements: a trade-off between reduced transposition and deleterious effects on neighboring gene expression. Genome Res. 19, 1419–1428 (2009).

    Article  CAS  Google Scholar 

  22. Hu, T.T. et al. The Arabidopsis lyrata genome sequence and the basis of rapid genome size change. Nat. Genet. 43, 476–481 (2011).

    Article  Google Scholar 

  23. Hollister, J.D. et al. Transposable elements and small RNAs contribute to gene expression divergence between Arabidopsis thaliana and Arabidopsis lyrata. Proc. Natl. Acad. Sci. USA 108, 2322–2327 (2011).

    Article  CAS  Google Scholar 

  24. Pontier, D. et al. Reinforcement of silencing at transposons and highly repeated sequences requires the concerted action of two distinct RNA polymerases IV in Arabidopsis. Genes Dev. 19, 2030–2040 (2005).

    Article  CAS  Google Scholar 

  25. Herr, A.J., Jensen, M.B., Dalmay, T. & Baulcombe, D.C. RNA polymerase IV directs silencing of endogenous DNA. Science 308, 118–120 (2005).

    Article  CAS  Google Scholar 

  26. Johnson, L., Cao, X. & Jacobsen, S. Interplay between two epigenetic marks. DNA methylation and histone H3 lysine 9 methylation. Curr. Biol. 12, 1360–1367 (2002).

    Article  CAS  Google Scholar 

  27. Stroud, H. et al. Genome-wide analysis of histone H3.1 and H3.3 variants in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 109, 5370–5375 (2012).

    Article  CAS  Google Scholar 

  28. Lu, C., Meyers, B.C. & Green, P.J. Construction of small RNA cDNA libraries for deep sequencing. Methods 43, 110–117 (2007).

    Article  Google Scholar 

  29. Langmead, B., Trapnell, C., Pop, M. & Salzberg, S.L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009).

    Article  Google Scholar 

  30. Chen, P.Y., Cokus, S.J. & Pellegrini, M.B.S. Seeker: precise mapping for bisulfite sequencing. BMC Bioinformatics 11, 203 (2010).

    Article  CAS  Google Scholar 

  31. Spyrou, C., Stark, R., Lynch, A.G. & Tavare, S. BayesPeak: Bayesian analysis of ChIP-seq data. BMC Bioinformatics 10, 299 (2009).

    Article  Google Scholar 

  32. Cairns, J. et al. BayesPeak—an R package for analysing ChIP-seq data. Bioinformatics 27, 713–714 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank T. Lagrange at the Université de Perpignan, Perpignan, France, for the NRPE1-Flag transgenic seeds and M. Akhavan for assistance with high-throughput sequencing. X.Z. is supported by Ruth L. Kirschstein National Research Service grant F32GM096483-01. C.J.H. is supported by the Damon Runyon Cancer Research Foundation fellowship. S.F. is supported by the Leukemia & Lymphoma Society Special fellowship. This work was supported by NIH grant GM60398, and S.E.J. is supported as an investigator of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Contributions

X.Z., C.J.H. and S.E.J. designed the experiments. X.Z., C.J.H., J.A.L., L.M.J., A.T. and S.F. performed the experiments. X.Z. and C.J.H. analyzed the data and wrote the manuscript.

Corresponding author

Correspondence to Steven E Jacobsen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 and Supplementary Tables 3–4 (PDF 1879 kb)

Supplementary Table 1

Genomic locations of identified NRPE1-enrichment sites and relative enrichment in NRPE1-FLAG ChIP-seq libraries compared to Col ChIP-seq libraries. (XLSX 405 kb)

Supplementary Table 2

“Ancient" transposons and corresponding blast hits between A. thaliana and A. lyrata. (XLSX 1072 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhong, X., Hale, C., Law, J. et al. DDR complex facilitates global association of RNA polymerase V to promoters and evolutionarily young transposons. Nat Struct Mol Biol 19, 870–875 (2012). https://doi.org/10.1038/nsmb.2354

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2354

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing