Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The translin–TRAX complex (C3PO) is a ribonuclease in tRNA processing

Subjects

Abstract

Conserved translin–TRAX complexes, also known as C3POs, have been implicated in many biological processes, but how they function remains unclear. Recently, C3PO was shown to be an endoRNase that promotes RNA interference (RNAi) in animal cells. Here, we show that C3PO does not play a significant role in RNAi in the filamentous fungus Neurospora crassa. Instead, the Neurospora C3PO functions as an RNase that removes the 5′ pre-tRNA fragments after the processing of pre-tRNAs by RNase P. In addition, translin and trax mutants have elevated levels of tRNA and protein translation and are more resistant to a cell death–inducing agent. Finally, we show that C3PO is also involved in tRNA processing in mouse embryonic fibroblast cells. This study identifies the endogenous RNA substrates of C3PO and provides a potential explanation for its roles in apparently diverse biological processes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Neurospora translin and TRAX are not required for RNAi and siRNA passenger-strand removal.
Figure 2: Accumulation of sRNA species in the tsnKO and trxKO strains is dependent on the catalytic activity of the translin–TRAX complex.
Figure 3: Deep sequencing of sRNAs reveals the accumulation of 5′ pre-tRNA fragments in the tsnKO strain.
Figure 4: High levels of 5′ pre-tRNA fragments in the tsnKO and trxKO strains.
Figure 5: Dicer is required for the production of the antisense-specific sRNAs.
Figure 6: The pre-tRNA fragments are substrates of the Neurospora translin–TRAX complex.
Figure 7: Translin and TRAX regulate levels of tRNA and protein translation.

Similar content being viewed by others

References

  1. Jaendling, A. & McFarlane, R.J. Biological roles of translin and translin-associated factor-X: RNA metabolism comes to the fore. Biochem. J. 429, 225–234 (2010).

    Article  CAS  Google Scholar 

  2. Jaendling, A., Ramayah, S., Pryce, D.W. & McFarlane, R.J. Functional characterisation of the Schizosaccharomyces pombe homologue of the leukaemia-associated translocation breakpoint binding protein translin and its binding partner, TRAX. Biochim. Biophys. Acta 1783, 203–213 (2008).

    Article  CAS  Google Scholar 

  3. Li, Z., Wu, Y. & Baraban, J.M. The Translin/Trax RNA binding complex: clues to function in the nervous system. Biochim. Biophys. Acta 1779, 479–485 (2008).

    Article  CAS  Google Scholar 

  4. Laufman, O., Ben Yosef, R., Adir, N. & Manor, H. Cloning and characterization of the Schizosaccharomyces pombe homologs of the human protein Translin and the Translin-associated protein TRAX. Nucleic Acids Res. 33, 4128–4139 (2005).

    Article  CAS  Google Scholar 

  5. Yang, S. et al. Translin-associated factor X is post-transcriptionally regulated by its partner protein TB-RBP, and both are essential for normal cell proliferation. J. Biol. Chem. 279, 12605–12614 (2004).

    Article  CAS  Google Scholar 

  6. Aoki, K. et al. A novel gene, Translin, encodes a recombination hotspot binding protein associated with chromosomal translocations. Nat. Genet. 10, 167–174 (1995).

    Article  CAS  Google Scholar 

  7. Kasai, M. et al. The translin ring specifically recognizes DNA ends at recombination hot spots in the human genome. J. Biol. Chem. 272, 11402–11407 (1997).

    Article  CAS  Google Scholar 

  8. Wang, J., Boja, E.S., Oubrahim, H. & Chock, P.B. Testis brain ribonucleic acid-binding protein/translin possesses both single-stranded and double-stranded ribonuclease activities. Biochemistry 43, 13424–13431 (2004).

    Article  CAS  Google Scholar 

  9. Suseendranathan, K. et al. Expression pattern of Drosophila translin and behavioral analyses of the mutant. Eur. J. Cell Biol. 86, 173–186 (2007).

    Article  CAS  Google Scholar 

  10. Chennathukuzhi, V. et al. Mice deficient for testis-brain RNA-binding protein exhibit a coordinate loss of TRAX, reduced fertility, altered gene expression in the brain, and behavioral changes. Mol. Cell. Biol. 23, 6419–6434 (2003).

    Article  CAS  Google Scholar 

  11. Stein, J.M. et al. Behavioral and neurochemical alterations in mice lacking the RNA-binding protein translin. J. Neurosci. 26, 2184–2196 (2006).

    Article  CAS  Google Scholar 

  12. Wu, X.Q., Xu, L. & Hecht, N.B. Dimerization of the testis brain RNA-binding protein (translin) is mediated through its C-terminus and is required for DNA- and RNA-binding. Nucleic Acids Res. 26, 1675–1680 (1998).

    Article  CAS  Google Scholar 

  13. Liu, Y. et al. C3PO, an endoribonuclease that promotes RNAi by facilitating RISC activation. Science 325, 750–753 (2009).

    Article  CAS  Google Scholar 

  14. Ye, X. et al. Structure of C3PO and mechanism of human RISC activation. Nat. Struct. Mol. Biol. 18, 650–657 (2011).

    Article  CAS  Google Scholar 

  15. Bühler, M. & Moazed, D. Transcription and RNAi in heterochromatic gene silencing. Nat. Struct. Mol. Biol. 14, 1041–1048 (2007).

    Article  Google Scholar 

  16. Ghildiyal, M. & Zamore, P.D. Small silencing RNAs: an expanding universe. Nat. Rev. Genet. 10, 94–108 (2009).

    Article  CAS  Google Scholar 

  17. Liu, Q. & Paroo, Z. Biochemical principles of small RNA pathways. Annu. Rev. Biochem. 79, 295–319 (2010).

    Article  CAS  Google Scholar 

  18. Siomi, H. & Siomi, M.C. On the road to reading the RNA-interference code. Nature 457, 396–404 (2009).

    Article  CAS  Google Scholar 

  19. Tian, Y. et al. Multimeric assembly and biochemical characterization of the Trax-translin endonuclease complex. Nat. Struct. Mol. Biol. 18, 658–664 (2011).

    Article  CAS  Google Scholar 

  20. Catalanotto, C., Nolan, T. & Cogoni, C. Homology effects in Neurospora crassa. FEMS Microbiol. Lett. 254, 182–189 (2006).

    Article  CAS  Google Scholar 

  21. Li, L., Chang, S.S. & Liu, Y. RNA interference pathways in filamentous fungi. Cell. Mol. Life Sci. 67, 3849–3863 (2010).

    Article  CAS  Google Scholar 

  22. Maiti, M., Lee, H.C. & Liu, Y. QIP, a putative exonuclease, interacts with the Neurospora Argonaute protein and facilitates conversion of duplex siRNA into single strands. Genes Dev. 21, 590–600 (2007).

    Article  CAS  Google Scholar 

  23. Lee, H.C. et al. qiRNA is a new type of small interfering RNA induced by DNA damage. Nature 459, 274–277 (2009).

    Article  CAS  Google Scholar 

  24. Lee, H.C. et al. Diverse pathways generate microRNA-like RNAs and Dicer-independent small interfering RNAs in fungi. Mol. Cell 38, 803–814 (2010).

    Article  CAS  Google Scholar 

  25. Choudhary, S. et al. A double-stranded-RNA response program important for RNA interference efficiency. Mol. Cell. Biol. 27, 3995–4005 (2007).

    Article  CAS  Google Scholar 

  26. Colot, H.V. et al. A high-throughput gene knockout procedure for Neurospora reveals functions for multiple transcription factors. Proc. Natl. Acad. Sci. USA 103, 10352–10357 (2006).

    Article  CAS  Google Scholar 

  27. Romano, N. & Macino, G. Quelling: transient inactivation of gene expression in Neurospora crassa by transformation with homologous sequences. Mol. Microbiol. 6, 3343–3353 (1992).

    Article  CAS  Google Scholar 

  28. Hartmann, R.K., Gossringer, M., Spath, B., Fischer, S. & Marchfelder, A. The making of tRNAs and more—RNase P and tRNase Z. Prog. Mol. Biol. Transl. Sci. 85, 319–368 (2009).

    Article  CAS  Google Scholar 

  29. Phizicky, E.M. & Hopper, A.K. tRNA biology charges to the front. Genes Dev. 24, 1832–1860 (2010).

    Article  Google Scholar 

  30. Walker, S.C. & Engelke, D.R. Ribonuclease P: the evolution of an ancient RNA enzyme. Crit. Rev. Biochem. Mol. Biol. 41, 77–102 (2006).

    Article  CAS  Google Scholar 

  31. Catalanotto, C. et al. Redundancy of the two dicer genes in transgene-induced posttranscriptional gene silencing in Neurospora crassa. Mol. Cell. Biol. 24, 2536–2545 (2004).

    Article  CAS  Google Scholar 

  32. Cogoni, C. & Macino, G. Gene silencing in Neurospora crassa requires a protein homologous to RNA-dependent RNA polymerase. Nature 399, 166–169 (1999).

    Article  CAS  Google Scholar 

  33. Lee, H.C. et al. The DNA/RNA-dependent RNA polymerase QDE-1 generates aberrant RNA and dsRNA for RNAi in a process requiring replication protein A and a DNA helicase. PLoS Biol. 8, e1000496 (2010).

    Article  Google Scholar 

  34. Shiu, P.K., Raju, N.B., Zickler, D. & Metzenberg, R.L. Meiotic silencing by unpaired DNA. Cell 107, 905–916 (2001).

    Article  CAS  Google Scholar 

  35. Castro, A., Lemos, C., Falcao, A., Glass, N.L. & Videira, A. Increased resistance of complex I mutants to phytosphingosine-induced programmed cell death. J. Biol. Chem. 283, 19314–19321 (2008).

    Article  CAS  Google Scholar 

  36. Zasloff, M., Santos, T., Romeo, P. & Rosenberg, M. Transcription and precursor processing of normal and mutant human tRNAiMet genes in a homologous cell-free system. J. Biol. Chem. 257, 7857–7863 (1982).

    CAS  PubMed  Google Scholar 

  37. Nashimoto, M., Wesemann, D.R., Geary, S., Tamura, M. & Kaspar, R.L. Long 5′ leaders inhibit removal of a 3′ trailer from a precursor tRNA by mammalian tRNA 3′ processing endoribonuclease. Nucleic Acids Res. 27, 2770–2776 (1999).

    Article  CAS  Google Scholar 

  38. Galagan, J.E. et al. The genome sequence of the filamentous fungus Neurospora crassa. Nature 422, 859–868 (2003).

    Article  CAS  Google Scholar 

  39. Randau, L., Schroder, I. & Soll, D. Life without RNase P. Nature 453, 120–123 (2008).

    Article  CAS  Google Scholar 

  40. Lee, Y.S., Shibata, Y., Malhotra, A. & Dutta, A. A novel class of small RNAs: tRNA-derived RNA fragments (tRFs). Genes Dev. 23, 2639–2649 (2009).

    Article  CAS  Google Scholar 

  41. Nunes, C.C. et al. Diverse and tissue-enriched small RNAs in the plant pathogenic fungus, Magnaporthe oryzae. BMC Genomics 12, 288 (2011).

    Article  CAS  Google Scholar 

  42. Cole, C. et al. Filtering of deep sequencing data reveals the existence of abundant Dicer-dependent small RNAs derived from tRNAs. RNA 15, 2147–2160 (2009).

    Article  CAS  Google Scholar 

  43. Ivanov, P., Emara, M.M., Villen, J., Gygi, S.P. & Anderson, P. Angiogenin-induced tRNA fragments inhibit translation initiation. Mol. Cell 43, 613–623 (2011).

    Article  CAS  Google Scholar 

  44. Ishida, R. et al. A role for the octameric ring protein, Translin, in mitotic cell division. FEBS Lett. 525, 105–110 (2002).

    Article  CAS  Google Scholar 

  45. Ebbole, D. & Sachs, M.S. A rapid and simple method for isolation of Neurospora crassa homokaryons using microconidia. Fungal Genet. Newsl. 37, 17–18 (1990).

    Google Scholar 

  46. He, Q., Cheng, P., He, Q. & Liu, Y. The COP9 signalosome regulates the Neurospora circadian clock by controlling the stability of the SCFFWD-1 complex. Genes Dev. 19, 1518–1531 (2005).

    Article  CAS  Google Scholar 

  47. Davis, R.L. & deSerres, D. Genetic and microbial research techniques for Neurospora crassa. Methods Enzymol. 27A, 79–143 (1970).

    Article  Google Scholar 

  48. Lewis, Z.A. et al. Relics of repeat-induced point mutation direct heterochromatin formation in Neurospora crassa. Genome Res. 19, 427–437 (2009).

    Article  CAS  Google Scholar 

  49. Pall, G.S., Codony-Servat, C., Byrne, J., Ritchie, L. & Hamilton, A. Carbodiimide-mediated cross-linking of RNA to nylon membranes improves the detection of siRNA, miRNA and piRNA by northern blot. Nucleic Acids Res. 35, e60 (2007).

    Article  Google Scholar 

  50. Cheng, P., Yang, Y., Heintzen, C. & Liu, Y. Coiled-coil domain mediated FRQ-FRQ interaction is essential for its circadian clock function in Neurospora. EMBO J. 20, 101–108 (2001).

    Article  CAS  Google Scholar 

  51. Garceau, N., Liu, Y., Loros, J.J. & Dunlap, J.C. Alternative initiation of translation and time-specific phosphorylation yield multiple forms of the essential clock protein FREQUENCY. Cell 89, 469–476 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank H. Yuan and Q. Ye in Y.L.'s lab at U.T. Southwestern Medical Center for technical assistance and Ying Liu and X. Ye in Q.L.'s lab for providing the recombinant Drosophila C3PO and for advice on C3PO purification. This work was supported by grants from the US National Institutes of Health (R01 GM062591 and R01 GM084283 to Y.L., R01GM084010 to Q.L. and R01GM058800 to C.C.M.) and from the Welch Foundation (I-1560 to Y.L. and I-1608 to Q.L.). C.C.M. is supported as a Howard Hughes Medical Institute Investigator.

Author information

Authors and Affiliations

Authors

Contributions

L.L. designed, conducted and interpreted experiments. W.G. performed sRNA sequencing and analyses. C.L. prepared RNA from MEFs. C.C.M. and Q.L. interpreted experimental results. Y.L. designed and interpreted experiments and wrote the paper.

Corresponding author

Correspondence to Yi Liu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 and Supplementary Tables 1–3 (PDF 3846 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, L., Gu, W., Liang, C. et al. The translin–TRAX complex (C3PO) is a ribonuclease in tRNA processing. Nat Struct Mol Biol 19, 824–830 (2012). https://doi.org/10.1038/nsmb.2337

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2337

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing