Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Structure of mammalian poly(ADP-ribose) glycohydrolase reveals a flexible tyrosine clasp as a substrate-binding element

Abstract

Reversible post-translational modification by poly(ADP-ribose) (PAR) regulates chromatin structure, DNA repair and cell fate in response to genotoxic stress. PAR glycohydrolase (PARG) removes PAR chains from poly ADP-ribosylated proteins to restore protein function and release oligo(ADP-ribose) chains to signal damage. Here we report crystal structures of mammalian PARG and its complex with a substrate mimic that reveal an open substrate-binding site and a unique 'tyrosine clasp' enabling endoglycosidic cleavage of branched PAR chains.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mammalian poly(ADP-ribose) glycohydrolase (PARG) structure.
Figure 2: PARG–inhibitor complex structure reveals the Tyr clasp as a unique substrate-binding element of mammalian PARG.
Figure 3: The mammalian PARG structure supports endoglycosidic cleavage of poly(ADP-ribose).

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

References

  1. Miwa, M., Tanaka, M., Matsushima, T. & Sugimura, T. J. Biol. Chem. 249, 3475–3482 (1974).

    CAS  PubMed  Google Scholar 

  2. Davidovic, L., Vodenicharov, M., Affar, E.B. & Poirier, G.G. Exp. Cell Res. 268, 7–13 (2001).

    Article  CAS  Google Scholar 

  3. Hatakeyama, K., Nemoto, Y., Ueda, K. & Hayaishi, O. J. Biol. Chem. 261, 14902–14911 (1986).

    CAS  PubMed  Google Scholar 

  4. Malanga, M. & Althaus, F.R. Biochem. Cell Biol. 83, 354–364 (2005).

    Article  CAS  Google Scholar 

  5. Cortes, U. et al. Mol. Cell Biol. 24, 7163–7178 (2004).

    Article  CAS  Google Scholar 

  6. Mortusewicz, O., Fouquerel, E., Amé, J.C., Leonhardt, H. & Schreiber, V. Nucleic Acids Res. 39, 5045–5056 (2011).

    Article  CAS  Google Scholar 

  7. Gao, H. et al. Exp. Cell Res. 313, 984–996 (2007).

    Article  CAS  Google Scholar 

  8. Botta, D. & Jacobson, M.K. Biochemistry 49, 7674–7682 (2010).

    Article  CAS  Google Scholar 

  9. Slama, J.T. et al. J. Med. Chem. 38, 389–393 (1995).

    Article  CAS  Google Scholar 

  10. Patel, C.N., Koh, D.W., Jacobson, M.K. & Oliveira, M.A. Biochem. J. 388, 493–500 (2005).

    Article  CAS  Google Scholar 

  11. Koh, D.W. et al. Biochemistry 42, 4855–4863 (2003).

    Article  CAS  Google Scholar 

  12. Karras, G.I. et al. EMBO J. 24, 1911–1920 (2005).

    Article  CAS  Google Scholar 

  13. Timinszky, G. et al. Nat. Struct. Mol. Biol. 16, 923–929 (2009).

    Article  CAS  Google Scholar 

  14. Slade, D. et al. Nature 477, 616–620 (2011).

    Article  CAS  Google Scholar 

  15. Chen, D. et al. J. Biol. Chem. 286, 13261–13271 (2011).

    Article  CAS  Google Scholar 

  16. Holm, L. & Sander, C. Trends Biochem. Sci. 20, 478–480 (1995).

    Article  CAS  Google Scholar 

  17. Lau, A.Y., Scharer, O.D., Samson, L., Verdine, G.L. & Ellenberger, T. Cell 95, 249–258 (1998).

    Article  CAS  Google Scholar 

  18. Meyer, R.G., Meyer-Ficca, M.L., Whatcott, C.J., Jacobson, E.L. & Jacobson, M.K. Exp. Cell Res. 313, 2920–2936 (2007).

    Article  CAS  Google Scholar 

  19. Tavassoli, M., Tavassoli, M.H. & Shall, S. Eur. J. Biochem. 135, 449–455 (1983).

    Article  CAS  Google Scholar 

  20. Andrabi, S.A. et al. Proc. Natl. Acad. Sci. USA 103, 18308–18313 (2006).

    Article  CAS  Google Scholar 

  21. Otwinowski, Z. & Minor, W. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  22. Pflugrath, J.W. Acta Crystallogr. D Biol. Crystallogr. 55, 1718–1725 (1999).

    Article  CAS  Google Scholar 

  23. Terwilliger, T.C. & Berendzen, J. Acta Crystallogr. D Biol. Crystallogr. 55, 849–861 (1999).

    Article  CAS  Google Scholar 

  24. Emsley, P. & Cowtan, K. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  Google Scholar 

  25. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255 (1997).

    Article  CAS  Google Scholar 

  26. Brünger, A.T. et al. Acta Crystallogr. D Biol. Crystallogr. 54, 905–921 (1998).

    Article  Google Scholar 

  27. Head, R.D. et al. J. Am. Chem. Soc. 118, 3959–3969 (1996).

    Article  CAS  Google Scholar 

  28. Clark, M., Cramer, R.D. III & Van Opdenbosch, N. J. Comput. Chem. 10, 982–1012 (1989).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank W.L. Kraus at University of Texas Southwestern Medical Center for providing a pET28a-ratPARG(1–972) plasmid. This work was supported in part by grants from the US National Institutes of Health (including 5R01 GM052504 to T.E.) and the Structural Cell Biology of DNA Repair Program (P01 CA92584 to T.E. and J.A.T.). X-ray diffraction and scattering technologies and their applications to the determination of macromolecular structures and conformations at the SIBYLS beamline at the Advanced Light Source, Lawrence Berkeley National Laboratory, are supported in part by the US Department of Energy program Integrated Diffraction Analysis Technologies under Contract Number DE-AC02-05CH11231 with the US Department of Energy.

Author information

Authors and Affiliations

Authors

Contributions

I.-K.K. designed experiments, crystallized the proteins, determined the crystal structures, analyzed results and wrote the manuscript. J.R.K. designed experiments, analyzed results and wrote the manuscript. C.M.W.H. performed the computational simulations. R.A.S. purified and crystallized the proteins. S.C. and J.A.T. helped with X-ray data collection and writing the manuscript. T.E. analyzed results, wrote the manuscript and provided financial support.

Corresponding author

Correspondence to Tom Ellenberger.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 and Supplementary Table 1 (PDF 3604 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, IK., Kiefer, J., Ho, C. et al. Structure of mammalian poly(ADP-ribose) glycohydrolase reveals a flexible tyrosine clasp as a substrate-binding element. Nat Struct Mol Biol 19, 653–656 (2012). https://doi.org/10.1038/nsmb.2305

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2305

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing