Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The cryo-EM structure of the UPF–EJC complex shows UPF1 poised toward the RNA 3′ end

Abstract

Nonsense-mediated mRNA decay (NMD) is a eukaryotic surveillance pathway that degrades aberrant mRNAs containing premature termination codons (PTCs). NMD is triggered upon the assembly of the UPF surveillance complex near a PTC. In humans, UPF assembly is prompted by the exon junction complex (EJC). We investigated the molecular architecture of the human UPF complex bound to the EJC by cryo-EM and using positional restraints from additional EM, MS and biochemical interaction data. The heptameric assembly is built around UPF2, a scaffold protein with a ring structure that closes around the CH domain of UPF1, keeping the helicase region in an accessible and unwinding-competent state. UPF2 also positions UPF3 to interact with the EJC. The geometry is such that this transient complex poises UPF1 to elicit helicase activity toward the 3′ end of the mRNP.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Reconstitution of biochemically pure and stable UPF–EJC complexes.
Figure 2: EM analysis of UPF–EJC complexes.
Figure 3: Molecular architecture of UPF1–UPF2–UPF3–EJC complex.
Figure 4: Validation of structural model of UPF–EJC complex.
Figure 5: Regions of protein-protein interactions detected by MS.
Figure 6: Labeling of RNA 3′ and 5′ ends within UPF–EJC complex.
Figure 7: Model of surveillance complex during NMD.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Garneau, N.L., Wilusz, J. & Wilusz, C.J. The highways and byways of mRNA decay. Nat. Rev. Mol. Cell Biol. 8, 113–126 (2007).

    Article  CAS  Google Scholar 

  2. Houseley, J. & Tollervey, D. The many pathways of RNA degradation. Cell 136, 763–776 (2009).

    Article  CAS  Google Scholar 

  3. Chang, Y.F., Imam, J.S. & Wilkinson, M.F. The nonsense-mediated decay RNA surveillance pathway. Annu. Rev. Biochem. 76, 51–74 (2007).

    Article  CAS  Google Scholar 

  4. Isken, O. & Maquat, L.E. The multiple lives of NMD factors: balancing roles in gene and genome regulation. Nat. Rev. Genet. 9, 699–712 (2008).

    Article  CAS  Google Scholar 

  5. Holbrook, J.A., Neu-Yilik, G., Hentze, M.W. & Kulozik, A.E. Nonsense-mediated decay approaches the clinic. Nat. Genet. 36, 801–808 (2004).

    Article  CAS  Google Scholar 

  6. McGlincy, N.J. & Smith, C.W. Alternative splicing resulting in nonsense-mediated mRNA decay: what is the meaning of nonsense? Trends Biochem. Sci. 33, 385–393 (2008).

    Article  CAS  Google Scholar 

  7. Rehwinkel, J., Raes, J. & Izaurralde, E. Nonsense-mediated mRNA decay: Target genes and functional diversification of effectors. Trends Biochem. Sci. 31, 639–646 (2006).

    Article  CAS  Google Scholar 

  8. Culbertson, M.R. & Leeds, P.F. Looking at mRNA decay pathways through the window of molecular evolution. Curr. Opin. Genet. Dev. 13, 207–214 (2003).

    Article  CAS  Google Scholar 

  9. Singh, G., Rebbapragada, I. & Lykke-Andersen, J. A competition between stimulators and antagonists of Upf complex recruitment governs human nonsense-mediated mRNA decay. PLoS Biol. 6, e111 (2008).

    Article  Google Scholar 

  10. Rebbapragada, I. & Lykke-Andersen, J. Execution of nonsense-mediated mRNA decay: what defines a substrate? Curr. Opin. Cell Biol. 21, 394–402 (2009).

    Article  CAS  Google Scholar 

  11. Amrani, N. et al. A faux 3′-UTR promotes aberrant termination and triggers nonsense-mediated mRNA decay. Nature 432, 112–118 (2004).

    Article  CAS  Google Scholar 

  12. Behm-Ansmant, I., Gatfield, D., Rehwinkel, J., Hilgers, V. & Izaurralde, E. A conserved role for cytoplasmic poly(A)-binding protein 1 (PABPC1) in nonsense-mediated mRNA decay. EMBO J. 26, 1591–1601 (2007).

    Article  CAS  Google Scholar 

  13. Le Hir, H., Gatfield, D., Izaurralde, E. & Moore, M.J. The exon-exon junction complex provides a binding platform for factors involved in mRNA export and nonsense-mediated mRNA decay. EMBO J. 20, 4987–4997 (2001).

    Article  CAS  Google Scholar 

  14. Saulière, J. et al. The exon junction complex differentially marks spliced junctions. Nat. Struct. Mol. Biol. 17, 1269–1271 (2010).

    Article  Google Scholar 

  15. Czaplinski, K. et al. The surveillance complex interacts with the translation release factors to enhance termination and degrade aberrant mRNAs. Genes Dev. 12, 1665–1677 (1998).

    Article  CAS  Google Scholar 

  16. Kashima, I. et al. Binding of a novel SMG-1–Upf1–eRF1–eRF3 complex (SURF) to the exon junction complex triggers Upf1 phosphorylation and nonsense-mediated mRNA decay. Genes Dev. 20, 355–367 (2006).

    Article  CAS  Google Scholar 

  17. Ivanov, P.V., Gehring, N.H., Kunz, J.B., Hentze, M.W. & Kulozik, A.E. Interactions between UPF1, eRFs, PABP and the exon junction complex suggest an integrated model for mammalian NMD pathways. EMBO J. 27, 736–747 (2008).

    Article  CAS  Google Scholar 

  18. Sun, X., Perlick, H.A., Dietz, H.C. & Maquat, L.E. A mutated human homologue to yeast Upf1 protein has a dominant-negative effect on the decay of nonsense-containing mRNAs in mammalian cells. Proc. Natl. Acad. Sci. USA 95, 10009–10014 (1998).

    Article  CAS  Google Scholar 

  19. Weng, Y., Czaplinski, K. & Peltz, S.W. ATP is a cofactor of the Upf1 protein that modulates its translation termination and RNA binding activities. RNA 4, 205–214 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Chamieh, H., Ballut, L., Bonneau, F. & Le Hir, H. NMD factors UPF2 and UPF3 bridge UPF1 to the exon junction complex and stimulate its RNA helicase activity. Nat. Struct. Mol. Biol. 15, 85–93 (2008).

    Article  CAS  Google Scholar 

  21. Chakrabarti, S. et al. Molecular mechanisms for the RNA-dependent ATPase activity of Upf1 and its regulation by Upf2. Mol. Cell 41, 693–703 (2011).

    Article  CAS  Google Scholar 

  22. Gehring, N.H., Neu-Yilik, G., Schell, T., Hentze, M.W. & Kulozik, A.E. Y14 and hUpf3b form an NMD-activating complex. Mol. Cell 11, 939–949 (2003).

    Article  CAS  Google Scholar 

  23. Buchwald, G. et al. Insights into the recruitment of the NMD machinery from the crystal structure of a core EJC–UPF3b complex. Proc. Natl. Acad. Sci. USA 107, 10050–10055 (2010).

    Article  CAS  Google Scholar 

  24. Yamashita, A., Ohnishi, T., Kashima, I., Taya, Y. & Ohno, S. Human SMG-1, a novel phosphatidylinositol 3-kinase-related protein kinase, associates with components of the mRNA surveillance complex and is involved in the regulation of nonsense-mediated mRNA decay. Genes Dev. 15, 2215–2228 (2001).

    Article  CAS  Google Scholar 

  25. Yamashita, A. et al. SMG-8 and SMG-9, two novel subunits of the SMG-1 complex, regulate remodeling of the mRNA surveillance complex during nonsense-mediated mRNA decay. Genes Dev. 23, 1091–1105 (2009).

    Article  CAS  Google Scholar 

  26. Arias-Palomo, E. et al. The nonsense-mediated mRNA decay SMG-1 kinase is regulated by large-scale conformational changes controlled by SMG-8. Genes Dev. 25, 153–164 (2011).

    Article  CAS  Google Scholar 

  27. Okada-Katsuhata, Y. et al. N- and C-terminal Upf1 phosphorylations create binding platforms for SMG-6 and SMG-5:SMG-7 during NMD. Nucleic Acids Res. 40, 1251–1266 (2012).

    Article  CAS  Google Scholar 

  28. Isken, O. et al. Upf1 phosphorylation triggers translational repression during nonsense-mediated mRNA decay. Cell 133, 314–327 (2008).

    Article  CAS  Google Scholar 

  29. Fukuhara, N. et al. SMG7 is a 14–3-3-like adaptor in the nonsense-mediated mRNA decay pathway. Mol. Cell 17, 537–547 (2005).

    Article  CAS  Google Scholar 

  30. Ishigaki, Y., Li, X., Serin, G. & Maquat, L.E. Evidence for a pioneer round of mRNA translation: mRNAs subject to nonsense-mediated decay in mammalian cells are bound by CBP80 and CBP20. Cell 106, 607–617 (2001).

    Article  CAS  Google Scholar 

  31. Hogg, J.R. & Goff, S.P. Upf1 senses 3′ UTR length to potentiate mRNA decay. Cell 143, 379–389 (2010).

    Article  CAS  Google Scholar 

  32. Gehring, N.H. et al. Exon-junction complex components specify distinct routes of nonsense-mediated mRNA decay with differential cofactor requirements. Mol. Cell 20, 65–75 (2005).

    Article  CAS  Google Scholar 

  33. Franks, T.M., Singh, G. & Lykke-Andersen, J. Upf1 ATPase-dependent mRNP disassembly is required for completion of nonsense- mediated mRNA decay. Cell 143, 938–950 (2010).

    Article  CAS  Google Scholar 

  34. Andersen, C.B. et al. Structure of the exon junction core complex with a trapped DEAD-box ATPase bound to RNA. Science 313, 1968–1972 (2006).

    Article  CAS  Google Scholar 

  35. Bono, F., Ebert, J., Lorentzen, E. & Conti, E. The crystal structure of the exon junction complex reveals how it maintains a stable grip on mRNA. Cell 126, 713–725 (2006).

    Article  CAS  Google Scholar 

  36. Kadlec, J., Izaurralde, E. & Cusack, S. The structural basis for the interaction between nonsense-mediated mRNA decay factors UPF2 and UPF3. Nat. Struct. Mol. Biol. 11, 330–337 (2004).

    Article  CAS  Google Scholar 

  37. Cheng, Z., Muhlrad, D., Lim, M.K., Parker, R. & Song, H. Structural and functional insights into the human Upf1 helicase core. EMBO J. 26, 253–264 (2007).

    Article  CAS  Google Scholar 

  38. Clerici, M. et al. Unusual bipartite mode of interaction between the nonsense-mediated decay factors, UPF1 and UPF2. EMBO J. 28, 2293–2306 (2009).

    Article  CAS  Google Scholar 

  39. Serin, G., Gersappe, A., Black, J.D., Aronoff, R. & Maquat, L.E. Identification and characterization of human orthologues to Saccharomyces cerevisiae Upf2 protein and Upf3 protein (Caenorhabditis elegans SMG-4). Mol. Cell. Biol. 21, 209–223 (2001).

    Article  CAS  Google Scholar 

  40. Ballut, L. et al. The exon junction core complex is locked onto RNA by inhibition of eIF4AIII ATPase activity. Nat. Struct. Mol. Biol. 12, 861–869 (2005).

    Article  CAS  Google Scholar 

  41. Stark, H. GraFix: stabilization of fragile macromolecular complexes for single particle cryo-EM. Methods Enzymol. 481, 109–126 (2010).

    Article  CAS  Google Scholar 

  42. Radermacher, M., Wagenknecht, T., Verschoor, A. & Frank, J. Three-dimensional reconstruction from a single-exposure, random conical tilt series applied to the 50S ribosomal subunit of Escherichia coli. J. Microsc. 146, 113–136 (1987).

    Article  CAS  Google Scholar 

  43. Richter, F.M., Sander, B., Golas, M.M., Stark, H. & Urlaub, H. Merging molecular electron microscopy and mass spectrometry by carbon film-assisted endoproteinase digestion. Mol. Cell. Proteomics 9, 1729–1741 (2010).

    Article  CAS  Google Scholar 

  44. Stroupe, M.E., Tange, T.O., Thomas, D.R., Moore, M.J. & Grigorieff, N. The three-dimensional architecture of the EJC core. J. Mol. Biol. 360, 743–749 (2006).

    Article  CAS  Google Scholar 

  45. Wang, H.W. et al. Structural insights into RNA processing by the human RISC-loading complex. Nat. Struct. Mol. Biol. 16, 1148–1153 (2009).

    Article  CAS  Google Scholar 

  46. Yusupova, G.Z., Yusupov, M.M., Cate, J.H. & Noller, H.F. The path of messenger RNA through the ribosome. Cell 106, 233–241 (2001).

    Article  CAS  Google Scholar 

  47. Jinek, M., Coyle, S.M. & Doudna, J.A. Coupled 5′ nucleotide recognition and processivity in Xrn1-mediated mRNA decay. Mol. Cell 41, 600–608 (2011).

    Article  CAS  Google Scholar 

  48. Gehring, N.H., Lamprinaki, S., Kulozik, A.E. & Hentze, M.W. Disassembly of exon junction complexes by PYM. Cell 137, 536–548 (2009).

    Article  CAS  Google Scholar 

  49. Ghosh, S., Marchand, V., Gaspar, I. & Ephrussi, A. Control of RNP motility and localization by a splicing-dependent structure in oskar mRNA. Nat. Struct. Mol. Biol. 19, 441–449 (2012).

    Article  CAS  Google Scholar 

  50. Hyre, D.E. et al. Cooperative hydrogen bond interactions in the streptavidin-biotin system. Protein Sci. 15, 459–467 (2006).

    Article  CAS  Google Scholar 

  51. Mindell, J.A. & Grigorieff, N. Accurate determination of local defocus and specimen tilt in electron microscopy. J. Struct. Biol. 142, 334–347 (2003).

    Article  Google Scholar 

  52. Heymann, J.B. & Belnap, D.M. Bsoft: image processing and molecular modeling for electron microscopy. J. Struct. Biol. 157, 3–18 (2007).

    Article  CAS  Google Scholar 

  53. Ludtke, S.J. 3-D structures of macromolecules using single-particle analysis in EMAN. Methods Mol. Biol. 673, 157–173 (2010).

    Article  CAS  Google Scholar 

  54. Scheres, S.H., Nunez-Ramirez, R., Sorzano, C.O., Carazo, J.M. & Marabini, R. Image processing for electron microscopy single-particle analysis using XMIPP. Nat. Protoc. 3, 977–990 (2008).

    Article  CAS  Google Scholar 

  55. Tang, G. et al. EMAN2: an extensible image processing suite for electron microscopy. J. Struct. Biol. 157, 38–46 (2007).

    Article  CAS  Google Scholar 

  56. Shaikh, T.R. et al. SPIDER image processing for single-particle reconstruction of biological macromolecules from electron micrographs. Nat. Protoc. 3, 1941–1974 (2008).

    Article  CAS  Google Scholar 

  57. Goddard, T.D., Huang, C.C. & Ferrin, T.E. Visualizing density maps with UCSF Chimera. J. Struct. Biol. 157, 281–287 (2007).

    Article  CAS  Google Scholar 

  58. Kelley, L.A. & Sternberg, M.J. Protein structure prediction on the Web: a case study using the Phyre server. Nat. Protoc. 4, 363–371 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank E. Arias-Palomo, E. Torreira and U. Jayachandran for help in the initial stages of this project, and C. Boulegue and S. Uebel (at the Max Planck Institute Martinsried Core Facility) and members of our labs for critical reading of the manuscript. This work was funded by the Spanish Government (SAF2008-00451 and SAF2011-22988 to O.L.) and the Red Temática de Investigación Cooperativa en Cáncer from the Instituto de Salud Carlos III (RD06/0020/1001 to O.L. and contract to R.M.). O.L. is additionally supported by the Human Frontiers Science Program (RGP39/2008 to O.L.), the Fundación Ramón Areces and the Government from the Autonomous Region of Madrid (S2010-BMD-2316). This work was also supported by the Max Planck Gesellschaft, the Sonderforschungsbereich SFB646, the Gottfried Wilhelm Leibniz Program of the Deutsche Forschungsgemeinschaft and the Center for Integrated Protein Science Munich (E.C.).

Author information

Authors and Affiliations

Authors

Contributions

R.M., R.C., D.G. and M.L. carried out EM. R.M. did all the image processing. R.C. purified and analyzed UPF2–UPF3 complexes. M.R. and H.U. did MS experiments. G.B. purified all proteins and complexes used, cross-linked complexes and analyzed data. H.U., E.C. and O.L. designed experiments, analyzed results and wrote the manuscript.

Corresponding authors

Correspondence to Elena Conti or Oscar Llorca.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 and Supplementary Note (PDF 10348 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Melero, R., Buchwald, G., Castaño, R. et al. The cryo-EM structure of the UPF–EJC complex shows UPF1 poised toward the RNA 3′ end. Nat Struct Mol Biol 19, 498–505 (2012). https://doi.org/10.1038/nsmb.2287

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2287

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing