Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Antidiabetic phospholipid–nuclear receptor complex reveals the mechanism for phospholipid-driven gene regulation

Abstract

The human nuclear receptor liver receptor homolog-1 (LRH-1) has an important role in controlling lipid and cholesterol homeostasis and is a potential target for the treatment of diabetes and hepatic diseases. LRH-1 is known to bind phospholipids, but the role of phospholipids in controlling LRH-1 activation remains highly debated. Here we describe the structure of both apo LRH-1 and LRH-1 in complex with the antidiabetic phospholipid dilauroylphosphatidylcholine (DLPC). Together with hydrogen-deuterium exchange MS and functional data, our studies show that DLPC binding is a dynamic process that alters co-regulator selectivity. We show that the lipid-free receptor undergoes previously unrecognized structural fluctuations, allowing it to interact with widely expressed co-repressors. These observations enhance our understanding of LRH-1 regulation and highlight its importance as a new therapeutic target for controlling diabetes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: DLPC binds directly to LRH-1 and promotes activation through unique interactions.
Figure 2: DLPC alters LRH-1 stability and structural dynamics.
Figure 3: DLPC binding affects LRH-1 dynamics and co-regulator preference.
Figure 4: Structure of apo LRH-1 identifies a novel functional region for activation.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Lee, J.M. et al. A nuclear-receptor-dependent phosphatidylcholine pathway with antidiabetic effects. Nature 474, 506–510 (2011).

    Article  CAS  Google Scholar 

  2. Ortlund, E.A. et al. Modulation of human nuclear receptor LRH-1 activity by phospholipids and SHP. Nat. Struct. Mol. Biol. 12, 357–363 (2005).

    Article  CAS  Google Scholar 

  3. Krylova, I.N. et al. Structural analyses reveal phosphatidyl inositols as ligands for the NR5 orphan receptors SF-1 and LRH-1. Cell 120, 343–355 (2005).

    Article  CAS  Google Scholar 

  4. Li, Y. et al. Structural and biochemical basis for selective repression of the orphan nuclear receptor liver receptor homolog 1 by small heterodimer partner. Proc. Natl. Acad. Sci. USA 102, 9505–9510 (2005).

    Article  CAS  Google Scholar 

  5. Fernandez-Marcos, P.J., Auwerx, J. & Schoonjans, K. Emerging actions of the nuclear receptor LRH-1 in the gut. Biochim. Biophys. Acta 1812, 947–955 (2011).

    Article  CAS  Google Scholar 

  6. Lee, Y.K. & Moore, D.D. Liver receptor homolog-1, an emerging metabolic modulator. Front. Biosci. 13, 5950–5958 (2008).

    Article  CAS  Google Scholar 

  7. Parker, K.L. & Schimmer, B.P. Steroidogenic factor 1: a key determinant of endocrine development and function. Endocr. Rev. 18, 361–377 (1997).

    Article  CAS  Google Scholar 

  8. Wagner, R.T., Xu, X., Yi, F., Merrill, B.J. & Cooney, A.J. Canonical Wnt/beta-catenin regulation of liver receptor homolog-1 mediates pluripotency gene expression. Stem Cells 28, 1794–1804 (2010).

    Article  CAS  Google Scholar 

  9. Gu, P. et al. Orphan nuclear receptor LRH-1 is required to maintain Oct4 expression at the epiblast stage of embryonic development. Mol. Cell Biol. 25, 3492–3505 (2005).

    Article  CAS  Google Scholar 

  10. Clyne, C.D., Speed, C.J., Zhou, J. & Simpson, E.R. Liver receptor homologue-1 (LRH-1) regulates expression of aromatase in preadipocytes. J. Biol. Chem. 277, 20591–20597 (2002).

    Article  CAS  Google Scholar 

  11. Clyne, C.D. et al. Regulation of aromatase expression by the nuclear receptor LRH-1 in adipose tissue. Mol. Cell Endocrinol. 215, 39–44 (2004).

    Article  CAS  Google Scholar 

  12. Zhou, J. et al. Interactions between prostaglandin E-2, liver receptor homologue-1, and aromatase in breast cancer. Cancer Res. 65, 657–663 (2005).

    CAS  PubMed  Google Scholar 

  13. Chand, A.L., Herridge, K.A., Thompson, E.W. & Clyne, C.D. The orphan nuclear receptor LRH-1 promotes breast cancer motility and invasion. Endocr. Relat. Cancer 17, 965–975 (2010).

    Article  CAS  Google Scholar 

  14. Annicotte, J.S. et al. The nuclear receptor liver receptor homolog-1 is an estrogen receptor target gene. Oncogene 24, 8167–8175 (2005).

    Article  CAS  Google Scholar 

  15. Thiruchelvam, P.T. et al. The liver receptor homolog-1 regulates estrogen receptor expression in breast cancer cells. Breast Cancer Res. Treat. 127, 385–396 (2011).

    Article  CAS  Google Scholar 

  16. Nagy, L. & Schwabe, J.W. Mechanism of the nuclear receptor molecular switch. Trends Biochem. Sci. 29, 317–324 (2004).

    Article  CAS  Google Scholar 

  17. Goodwin, B. et al. A regulatory cascade of the nuclear receptors FXR, SHP-1, and LRH-1 represses bile acid biosynthesis. Mol. Cell 6, 517–526 (2000).

    Article  CAS  Google Scholar 

  18. Sablin, E.P. et al. The structure of corepressor Dax-1 bound to its target nuclear receptor LRH-1. Proc. Natl. Acad. Sci. USA 105, 18390–18395 (2008).

    Article  CAS  Google Scholar 

  19. Sablin, E.P., Krylova, I.N., Fletterick, R.J. & Ingraham, H.A. Structural basis for ligand-independent activation of the orphan nuclear receptor LRH-1. Mol. Cell 11, 1575–1585 (2003).

    Article  CAS  Google Scholar 

  20. Ingraham, H.A. & Redinbo, M.R. Orphan nuclear receptors adopted by crystallography. Curr. Opin. Struct. Biol. 15, 708–715 (2005).

    Article  CAS  Google Scholar 

  21. Xu, P.L., Kong, Y.Y., Xie, Y.H. & Wang, Y. Corepressor SMRT specifically represses the transcriptional activity of orphan nuclear receptor hB1F/hLRH-1. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai) 35, 897–903 (2003).

    CAS  Google Scholar 

  22. Wang, W. et al. The crystal structures of human steroidogenic factor-1 and liver receptor homologue-1. Proc. Natl. Acad. Sci. USA 102, 7505–7510 (2005).

    Article  CAS  Google Scholar 

  23. Li, Y. et al. Crystallographic identification and functional characterization of phospholipids as ligands for the orphan nuclear receptor steroidogenic factor-1. Mol. Cell 17, 491–502 (2005).

    Article  CAS  Google Scholar 

  24. Gee, A.C. & Katzenellenbogen, J.A. Probing conformational changes in the estrogen receptor: evidence for a partially unfolded intermediate facilitating ligand binding and release. Mol. Endocrinol. 15, 421–428 (2001).

    Article  CAS  Google Scholar 

  25. Yumoto, F. et al. Structural basis of coactivation of liver receptor homolog-1 by β-catenin. Proc. Natl. Acad. Sci. USA 109, 143–148 (2012).

    Article  CAS  Google Scholar 

  26. Jasuja, R. et al. Kinetic and thermodynamic characterization of dihydrotestosterone-induced conformational perturbations in androgen receptor ligand-binding domain. Mol. Endocrinol. 23, 1231–1241 (2009).

    Article  CAS  Google Scholar 

  27. Venteclef, N. et al. GPS2-dependent corepressor/SUMO pathways govern anti-inflammatory actions of LRH-1 and LXRbeta in the hepatic acute phase response. Genes Dev. 24, 381–395 (2010).

    Article  CAS  Google Scholar 

  28. Whitby, R.J. et al. Small molecule agonists of the orphan nuclear receptors steroidogenic factor-1 (SF-1, NR5A1) and liver receptor homologue-1 (LRH-1, NR5A2). J. Med. Chem. 54, 2266–2281 (2011).

    Article  CAS  Google Scholar 

  29. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  30. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255 (1997).

    Article  CAS  Google Scholar 

  31. Potterton, E., Briggs, P., Turkenburg, M. & Dodson, E. A graphical user interface to the CCP4 program suite. Acta Crystallogr. D Biol. Crystallogr. 59, 1131–1137 (2003).

    Article  Google Scholar 

  32. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  Google Scholar 

  33. Emsley, P., Lohkamp, B., Scott, W.G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).

    Article  CAS  Google Scholar 

  34. Chen, V.B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 66, 12–21 (2010).

    Article  CAS  Google Scholar 

  35. Bligh, E.G. & Dyer, W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37, 911–917 (1959).

    Article  CAS  Google Scholar 

  36. Zhou, X. & Arthur, G. Improved procedures for the determination of lipid phosphorus by malachite green. J. Lipid Res. 33, 1233–1236 (1992).

    CAS  PubMed  Google Scholar 

  37. Louis-Jeune, C., Andrade-Navarro, M.A. & Perez-Iratxeta, C. Prediction of protein secondary structure from circular dichroism using theoretically derived spectra. Proteins published online, doi:10.1002/prot.23188 (14 September 2011).

  38. Chalmers, M.J. et al. Probing protein ligand interactions by automated hydrogen/deuterium exchange mass spectrometry. Anal. Chem. 78, 1005–1014 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank N.T. Seyfried in the Department of Biochemistry at Emory University for his help in acquiring the MS data for the proteolysis protection assays. We thank F.H. Strobel in the Department of Chemistry at Emory University for his help in acquiring the MS data for phospholipids. P.R.G. was supported by NIH grants GM084041 (PI: P.R. Griffin) and MH084512 (PI: H. Rosen). This work was supported with start-up funds from Emory University. P.M.M. was supported by an Emory–National Institute of Environmental Health Sciences Graduate and Postdoctoral Training in Toxicology grant (T32ES012870).

Author information

Authors and Affiliations

Authors

Contributions

P.M.M. purified, crystallized and determined both LRH-1 structures, measured phospholipid levels and carried out co-regulator-peptide interaction studies. M.C.P. measured lipid phosphorus levels, optimized apo LRH-1 production and carried out co-regulator peptide interaction studies. W.H.H. conducted reporter gene experiments. J.L.L. and P.R.G. conducted thermal unfolding and HDX experiments. P.M.M., J.L.L., P.R.G. and E.A.O. analyzed and interpreted the data. P.M.M. and E.A.O. conceived the experiments and wrote the manuscript.

Corresponding author

Correspondence to Eric A Ortlund.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4, Supplementary Tables 1 and 2, and Supplementary Methods (PDF 10797 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Musille, P., Pathak, M., Lauer, J. et al. Antidiabetic phospholipid–nuclear receptor complex reveals the mechanism for phospholipid-driven gene regulation. Nat Struct Mol Biol 19, 532–537 (2012). https://doi.org/10.1038/nsmb.2279

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2279

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing