Insights into dynein motor domain function from a 3.3-Å crystal structure


Dyneins power the beating of cilia and flagella, transport various intracellular cargos and are necessary for mitosis. All dyneins have a 300-kDa motor domain consisting of a ring of six AAA+ domains. ATP hydrolysis in the AAA+ ring drives the cyclic relocation of a motile element, the linker domain, to generate the force necessary for movement. How the linker interacts with the ring during the ATP hydrolysis cycle is not known. Here we present a 3.3-Å crystal structure of the motor domain of Saccharomyces cerevisiae cytoplasmic dynein, crystallized in the absence of nucleotides. The linker is docked to a conserved site on AAA5, which is confirmed by mutagenesis as functionally necessary. Nucleotide soaking experiments show that the main ATP hydrolysis site in dynein (AAA1) is in a low-nucleotide affinity conformation and reveal the nucleotide interactions of the other three sites (AAA2, AAA3 and AAA4).

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Overview of the dynein motor domain.
Figure 2: Interaction of the linker with the AAA+ ring.
Figure 3: Conservation plots of the dynein motor domain.
Figure 4: Nucleotide binding sites in the AAA+ ring.
Figure 5: Schematic representation of the nucleotide-free dynein motor domain.

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank


  1. 1

    Vallee, R.B., Williams, J.C., Varma, D. & Barnhart, L.E. Dynein: an ancient motor protein involved in multiple modes of transport. J. Neurobiol. 58, 189–200 (2004).

    CAS  Article  Google Scholar 

  2. 2

    Dodding, M.P. & Way, M. Coupling viruses to dynein and kinesin-1. EMBO J. 30, 3527–3539 (2011).

    CAS  Article  Google Scholar 

  3. 3

    Leigh, M.W. et al. Clinical and genetic aspects of primary ciliary dyskinesia/Kartagener syndrome. Genet. Med. 11, 473–487 (2009).

    Article  Google Scholar 

  4. 4

    Hafezparast, M. et al. Mutations in dynein link motor neuron degeneration to defects in retrograde transport. Science 300, 808–812 (2003).

    CAS  Article  Google Scholar 

  5. 5

    Burgess, S.A., Walker, M.L., Sakakibara, H., Knight, P.J. & Oiwa, K. Dynein structure and power stroke. Nature 421, 715–718 (2003).

    CAS  Article  Google Scholar 

  6. 6

    Roberts, A.J. et al. AAA+ Ring and linker swing mechanism in the dynein motor. Cell 136, 485–495 (2009).

    CAS  Article  Google Scholar 

  7. 7

    Carter, A.P., Cho, C., Jin, L. & Vale, R.D. Crystal structure of the dynein motor domain. Science 331, 1159–1165 (2011).

    CAS  Article  Google Scholar 

  8. 8

    Kon, T., Sutoh, K. & Kurisu, G. X-ray structure of a functional full-length dynein motor domain. Nat. Struct. Mol. Biol. 18, 638–642 (2011).

    CAS  Article  Google Scholar 

  9. 9

    Neuwald, A.F., Aravind, L., Spouge, J.L. & Koonin, E.V. AAA+: a class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes. Genome Res. 9, 27–43 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10

    Gibbons, I.R., Gibbons, B.H., Mocz, G. & Asai, D.J. Multiple nucleotide-binding sites in the sequence of dynein beta heavy chain. Nature 352, 640–643 (1991).

    CAS  Article  Google Scholar 

  11. 11

    Kon, T., Mogami, T., Ohkura, R., Nishiura, M. & Sutoh, K. ATP hydrolysis cycle-dependent tail motions in cytoplasmic dynein. Nat. Struct. Mol. Biol. 12, 513–519 (2005).

    CAS  Article  Google Scholar 

  12. 12

    Kon, T., Nishiura, M., Ohkura, R., Toyoshima, Y.Y. & Sutoh, K. Distinct functions of nucleotide-binding/hydrolysis sites in the four AAA modules of cytoplasmic dynein. Biochemistry 43, 11266–11274 (2004).

    CAS  Article  Google Scholar 

  13. 13

    Cho, C., Reck-Peterson, S.L. & Vale, R.D. Regulatory ATPase sites of cytoplasmic dynein affect processivity and force generation. J. Biol. Chem. 283, 25839–25845 (2008).

    CAS  Article  Google Scholar 

  14. 14

    Reck-Peterson, S.L. et al. Single-molecule analysis of dynein processivity and stepping behavior. Cell 126, 335–348 (2006).

    CAS  Article  Google Scholar 

  15. 15

    Shimizu, T. & Johnson, K.A. Kinetic evidence for multiple dynein ATPase sites. J. Biol. Chem. 258, 13841–13846 (1983).

    CAS  PubMed  Google Scholar 

  16. 16

    Mogami, T., Kon, T., Ito, K. & Sutoh, K. Kinetic characterization of tail swing steps in the ATPase cycle of Dictyostelium cytoplasmic dynein. J. Biol. Chem. 282, 21639–21644 (2007).

    CAS  Article  Google Scholar 

  17. 17

    Ross, J.L., Wallace, K., Shuman, H., Goldman, Y.E. & Holzbaur, E.L. Processive bidirectional motion of dynein-dynactin complexes in vitro. Nat. Cell Biol. 8, 562–570 (2006).

    CAS  Article  Google Scholar 

  18. 18

    Chen, B. et al. Engagement of arginine finger to ATP triggers large conformational changes in NtrC1 AAA+ ATPase for remodeling bacterial RNA polymerase. Structure 18, 1420–1430 (2010).

    CAS  Article  Google Scholar 

  19. 19

    Davies, J.M., Brunger, A.T. & Weis, W.I. Improved structures of full-length p97, an AAA ATPase: implications for mechanisms of nucleotide-dependent conformational change. Structure 16, 715–726 (2008).

    CAS  Article  Google Scholar 

  20. 20

    Glynn, S.E., Martin, A., Nager, A.R., Baker, T.A. & Sauer, R.T. Structures of asymmetric ClpX hexamers reveal nucleotide-dependent motions in a AAA+ protein-unfolding machine. Cell 139, 744–756 (2009).

    CAS  Article  Google Scholar 

  21. 21

    Singleton, M.R., Sawaya, M.R., Ellenberger, T. & Wigley, D.B. Crystal structure of T7 gene 4 ring helicase indicates a mechanism for sequential hydrolysis of nucleotides. Cell 101, 589–600 (2000).

    CAS  Article  Google Scholar 

  22. 22

    Smith, D.M., Fraga, H., Reis, C., Kafri, G. & Goldberg, A.L. ATP binds to proteasomal ATPases in pairs with distinct functional effects, implying an ordered reaction cycle. Cell 144, 526–538 (2011).

    CAS  Article  Google Scholar 

  23. 23

    Coureux, P.D., Sweeney, H.L. & Houdusse, A. Three myosin V structures delineate essential features of chemo-mechanical transduction. EMBO J. 23, 4527–4537 (2004).

    CAS  Article  Google Scholar 

  24. 24

    Imamula, K., Kon, T., Ohkura, R. & Sutoh, K. The coordination of cyclic microtubule association/dissociation and tail swing of cytoplasmic dynein. Proc. Natl. Acad. Sci. USA 104, 16134–16139 (2007).

    CAS  Article  Google Scholar 

  25. 25

    Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    CAS  Article  Google Scholar 

  26. 26

    Kabsch, W. Xds. Acta Crystallogr. D Biol. Crystallogr. 66, 125–132 (2010).

    CAS  Article  Google Scholar 

  27. 27

    Leslie, A.G.W. & Powell, H.R. Processing diffraction data with MOSFLM. in Evolving Methods for Macromolecular Crystallography Vol. 245 (eds. Read, R.J. & Sussman, J.L.) 41–51 (Springer, 2007).

    Google Scholar 

  28. 28

    Evans, P.R. An introduction to data reduction: space-group determination, scaling and intensity statistics. Acta Crystallogr. D Biol. Crystallogr. 67, 282–292 (2011).

    CAS  Article  Google Scholar 

  29. 29

    Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50, 760–763 (1994).

  30. 30

    McCoy, A.J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    CAS  Article  Google Scholar 

  31. 31

    Adams, P.D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).

    CAS  Article  Google Scholar 

  32. 32

    Cowtan, K. 'dm': an automated procedure for phase improvement by density modification. in Joint CCP4 and ESF-EACBM Newsletter on Protein Crystallography Vol. 31, 34–38. (Daresbury Laboratory, Warrington, UK, 1994).

    Google Scholar 

  33. 33

    Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  Google Scholar 

  34. 34

    Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255 (1997).

    CAS  Article  Google Scholar 

  35. 35

    Brünger, A.T. et al. Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 54, 905–921 (1998).

    Article  Google Scholar 

  36. 36

    Shindyalov, I.N. & Bourne, P.E. Protein structure alignment by incremental combinatorial extension (CE) of the optimal path. Protein Eng. 11, 739–747 (1998).

    CAS  Article  Google Scholar 

Download references


We thank C. Cho for her work helping to identify heavy atom derivatives and suitable crystallization conditions. We also thank M. Schlager, A. Diamant, C. Cho, R. Vale, K. Nagai and L. Passmore for helpful discussions and their comments on the manuscript. This work was supported by the Medical Research Council (MC_UP_A025_1011 to A.P.C.).

Author information




E.S.G., H.S. and A.P.C. produced, purified and crystallized the protein. H.S. and E.S.G. prepared heavy atom derivatives. H.S. and A.P.C. collected data on crystals and determined the structure. H.S. carried out phasing. All authors built the model. E.S.G. and A.P.C. conducted the in vitro experiments. A.P.C. and H.S. wrote the paper.

Corresponding author

Correspondence to Andrew P Carter.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 (PDF 4727 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Schmidt, H., Gleave, E. & Carter, A. Insights into dynein motor domain function from a 3.3-Å crystal structure. Nat Struct Mol Biol 19, 492–497 (2012).

Download citation

Further reading