Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Crystal structure of a heterodimeric ABC transporter in its inward-facing conformation

Abstract

ATP-binding cassette (ABC) transporters shuttle a wide variety of molecules across cell membranes by alternating between inward- and outward-facing conformations, harnessing the energy of ATP binding and hydrolysis at their nucleotide binding domains (NBDs). Here we present the 2.9-Å crystal structure of the heterodimeric ABC transporter TM287–TM288 (TM287/288) from Thermotoga maritima in its inward-facing state. In contrast to previous studies, we found that the NBDs only partially separate, remaining in contact through an interface involving conserved motifs that connect the two ATP hydrolysis sites. We observed AMP-PNP binding to the degenerate catalytic site, which deviates from the consensus sequence in the same positions as the eukaryotic homologs CFTR and TAP1–TAP2 (TAP1/2). The TM287/288 structure provides unprecedented insights into the mechanism of heterodimeric ABC exporters and will enable future studies on this large transporter superfamily.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Functional analysis of TM287/288.
Figure 2: TM287/288 viewed along the membrane plane.
Figure 3: Arrangement of the NBDs.
Figure 4: Preferential nucleotide binding to the degenerate site of TM287/288.
Figure 5: Conformational changes from the inward-facing state of TM287/288 to the outward-facing state (Sav1866).
Figure 6: Proposed mechanism of transport in heterodimeric ABC transporters.

Similar content being viewed by others

References

  1. Davidson, A.L., Dassa, E., Orelle, C. & Chen, J. Structure, function, and evolution of bacterial ATP-binding cassette systems. Microbiol. Mol. Biol. Rev. 72, 317–364 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Seeger, M.A. & van Veen, H.W. Molecular basis of multidrug transport by ABC transporters. Biochim. Biophys. Acta 1794, 725–737 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. Gottesman, M.M. & Ling, V. The molecular basis of multidrug resistance in cancer: the early years of P-glycoprotein research. FEBS Lett. 580, 998–1009 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Pajic, M. et al. Moderate increase in Mdr1a/1b expression causes in vivo resistance to doxorubicin in a mouse model for hereditary breast cancer. Cancer Res. 69, 6396–6404 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. Gadsby, D.C., Vergani, P. & Csanady, L. The ABC protein turned chloride channel whose failure causes cystic fibrosis. Nature 440, 477–483 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Garvey, M.I., Baylay, A.J., Wong, R.L. & Piddock, L.J. Overexpression of patA and patB, which encode ABC transporters, is associated with fluoroquinolone resistance in clinical isolates of Streptococcus pneumoniae. Antimicrob. Agents Chemother. 55, 190–196 (2011).

    Article  CAS  PubMed  Google Scholar 

  7. Lubelski, J., van Merkerk, R., Konings, W.N. & Driessen, A.J. Nucleotide-binding sites of the heterodimeric LmrCD ABC-multidrug transporter of Lactococcus lactis are asymmetric. Biochemistry 45, 648–656 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Aittoniemi, J. et al. SUR1: a unique ATP-binding cassette protein that functions as an ion channel regulator. Phil. Trans. R. Soc. Lond. B 364, 257–267 (2009).

    Article  CAS  Google Scholar 

  9. Higgins, C.F. & Linton, K.J. The ATP switch model for ABC transporters. Nat. Struct. Mol. Biol. 11, 918–926 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Dawson, R.J. & Locher, K.P. Structure of a bacterial multidrug ABC transporter. Nature 443, 180–185 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Schneider, E. & Hunke, S. ATP-binding-cassette (ABC) transport systems: functional and structural aspects of the ATP-hydrolyzing subunits/domains. FEMS Microbiol. Rev. 22, 1–20 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Jones, P.M. & George, A.M. Subunit interactions in ABC transporters: towards a functional architecture. FEMS Microbiol. Lett. 179, 187–202 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Hopfner, K.P. et al. Structural biology of Rad50 ATPase: ATP-driven conformational control in DNA double-strand break repair and the ABC-ATPase superfamily. Cell 101, 789–800 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Chen, J., Lu, G., Lin, J., Davidson, A.L. & Quiocho, F.A. A tweezers-like motion of the ATP-binding cassette dimer in an ABC transport cycle. Mol. Cell 12, 651–661 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Orelle, C., Dalmas, O., Gros, P., Di Pietro, A. & Jault, J.M. The conserved glutamate residue adjacent to the Walker-B motif is the catalytic base for ATP hydrolysis in the ATP-binding cassette transporter BmrA. J. Biol. Chem. 278, 47002–47008 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Zaitseva, J., Jenewein, S., Jumpertz, T., Holland, I.B. & Schmitt, L. H662 is the linchpin of ATP hydrolysis in the nucleotide-binding domain of the ABC transporter HlyB. EMBO J. 24, 1901–1910 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Oldham, M.L. & Chen, J. Snapshots of the maltose transporter during ATP hydrolysis. Proc. Natl. Acad. Sci. USA 108, 15152–15156 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Smith, P.C. et al. ATP binding to the motor domain from an ABC transporter drives formation of a nucleotide sandwich dimer. Mol. Cell 10, 139–149 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Venter, H., Shilling, R.A., Velamakanni, S., Balakrishnan, L. & Van Veen, H.W. An ABC transporter with a secondary-active multidrug translocator domain. Nature 426, 866–870 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Doerrler, W.T., Reedy, M.C. & Raetz, C.R. An Escherichia coli mutant defective in lipid export. J. Biol. Chem. 276, 11461–11464 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Velamakanni, S., Yao, Y., Gutmann, D.A. & van Veen, H.W. Multidrug Transport by the ABC Transporter Sav1866 from Staphylococcus aureus. Biochemistry 47, 9300–9308 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. Procko, E., O'Mara, M.L., Bennett, W.F., Tieleman, D.P. & Gaudet, R. The mechanism of ABC transporters: general lessons from structural and functional studies of an antigenic peptide transporter. FASEB J. 23, 1287–1302 (2009).

    Article  CAS  PubMed  Google Scholar 

  23. Parcej, D. & Tampe, R. ABC proteins in antigen translocation and viral inhibition. Nat. Chem. Biol. 6, 572–580 (2010).

    Article  CAS  PubMed  Google Scholar 

  24. Torres, C., Galian, C., Freiberg, C., Fantino, J.R. & Jault, J.M. The YheI/YheH heterodimer from Bacillus subtilis is a multidrug ABC transporter. Biochim. Biophys. Acta 1788, 615–622 (2009).

    Article  CAS  PubMed  Google Scholar 

  25. Zutz, A. et al. Asymmetric ATP hydrolysis cycle of the heterodimeric multidrug ABC transport complex TmrAB from Thermus thermophilus. J. Biol. Chem. 286, 7104–7115 (2011).

    Article  CAS  PubMed  Google Scholar 

  26. Dawson, R.J. & Locher, K.P. Structure of the multidrug ABC transporter Sav1866 from Staphylococcus aureus in complex with AMP-PNP. FEBS Lett. 581, 935–938 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Ward, A., Reyes, C.L., Yu, J., Roth, C.B. & Chang, G. Flexibility in the ABC transporter MsbA: Alternating access with a twist. Proc. Natl. Acad. Sci. USA 104, 19005–19010 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Aller, S.G. et al. Structure of P-glycoprotein reveals a molecular basis for poly-specific drug binding. Science 323, 1718–1722 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lubelski, J. et al. LmrCD is a major multidrug resistance transporter in Lactococcus lactis. Mol. Microbiol. 61, 771–781 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Venter, H., Velamakanni, S., Balakrishnan, L. & van Veen, H.W. On the energy-dependence of Hoechst 33342 transport by the ABC transporter LmrA. Biochem. Pharmacol. 75, 866–874 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. Shapiro, A.B. & Ling, V. Extraction of Hoechst 33342 from the cytoplasmic leaflet of the plasma membrane by P-glycoprotein. Eur. J. Biochem. 250, 122–129 (1997).

    Article  CAS  PubMed  Google Scholar 

  32. Ambudkar, S.V. et al. Partial purification and reconstitution of the human multidrug-resistance pump: characterization of the drug-stimulatable ATP hydrolysis. Proc. Natl. Acad. Sci. USA 89, 8472–8476 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Eckford, P.D. & Sharom, F.J. Functional characterization of Escherichia coli MsbA: interaction with nucleotides and substrates. J. Biol. Chem. 283, 12840–12850 (2008).

    Article  CAS  PubMed  Google Scholar 

  34. Yang, R., Cui, L., Hou, Y.X., Riordan, J.R. & Chang, X.B. ATP binding to the first nucleotide binding domain of multidrug resistance-associated protein plays a regulatory role at low nucleotide concentration, whereas ATP hydrolysis at the second plays a dominant role in ATP-dependent leukotriene C4 transport. J. Biol. Chem. 278, 30764–30771 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Basso, C., Vergani, P., Nairn, A.C. & Gadsby, D.C. Prolonged nonhydrolytic interaction of nucleotide with CFTR′s NH2-terminal nucleotide binding domain and its role in channel gating. J. Gen. Physiol. 122, 333–348 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Perria, C.L., Rajamanickam, V., Lapinski, P.E. & Raghavan, M. Catalytic site modifications of TAP1 and TAP2 and their functional consequences. J. Biol. Chem. 281, 39839–39851 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Tsai, M.F., Li, M. & Hwang, T.C. Stable ATP binding mediated by a partial NBD dimer of the CFTR chloride channel. J. Gen. Physiol. 135, 399–414 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Masia, R. & Nichols, C.G. Functional clustering of mutations in the dimer interface of the nucleotide binding folds of the sulfonylurea receptor. J. Biol. Chem. 283, 30322–30329 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Quick, M. & Javitch, J.A. Monitoring the function of membrane transport proteins in detergent-solubilized form. Proc. Natl. Acad. Sci. USA 104, 3603–3608 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Smriti, Z.P. & McHaourab, H.S. Mapping daunorubicin-binding Sites in the ATP-binding cassette transporter MsbA using site-specific quenching by spin labels. J. Biol. Chem. 284, 13904–13913 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Pleban, K. et al. P-glycoprotein substrate binding domains are located at the transmembrane domain/transmembrane domain interfaces: a combined photoaffinity labeling-protein homology modeling approach. Mol. Pharmacol. 67, 365–374 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Borbat, P.P. et al. Conformational motion of the ABC transporter MsbA induced by ATP hydrolysis. PLoS Biol. 5, e271 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Doshi, R., Woebking, B. & van Veen, H.W. Dissection of the conformational cycle of the multidrug/lipid A ABC exporter MsbA. Proteins 78, 2867–2872 (2010).

    Article  CAS  PubMed  Google Scholar 

  44. Lewis, H.A. et al. Structure of nucleotide-binding domain 1 of the cystic fibrosis transmembrane conductance regulator. EMBO J. 23, 282–293 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. Ramaen, O. et al. Structure of the human multidrug resistance protein 1 nucleotide binding domain 1 bound to Mg2+/ATP reveals a non-productive catalytic site. J. Mol. Biol. 359, 940–949 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Procko, E., Ferrin-O'Connell, I., Ng, S.L. & Gaudet, R. Distinct structural and functional properties of the ATPase sites in an asymmetric ABC transporter. Mol. Cell 24, 51–62 (2006).

    Article  CAS  PubMed  Google Scholar 

  47. Jardetzky, O. Simple allosteric model for membrane pumps. Nature 211, 969–970 (1966).

    Article  CAS  PubMed  Google Scholar 

  48. Huber, R. et al. Thermotoga maritima sp. nov. represents a new genus of unique extremely thermophilic eubacteria growing up to 90°C. Arch. Microbiol. 144, 324–333 (1986).

    Article  CAS  Google Scholar 

  49. Geertsma, E.R. & Dutzler, R. A versatile and efficient high-throughput cloning tool for structural biology. Biochemistry 50, 3272–3278 (2011).

    Article  CAS  PubMed  Google Scholar 

  50. Seeger, M.A. et al. Engineered disulfide bonds support the functional rotation mechanism of multidrug efflux pump AcrB. Nat. Struct. Mol. Biol. 15, 199–205 (2008).

    Article  CAS  PubMed  Google Scholar 

  51. Geertsma, E.R. & Poolman, B. High-throughput cloning and expression in recalcitrant bacteria. Nat. Methods 4, 705–707 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Geertsma, E.R., Nik Mahmood, N.A., Schuurman-Wolters, G.K. & Poolman, B. Membrane reconstitution of ABC transporters and assays of translocator function. Nat. Protoc. 3, 256–266 (2008).

    Article  CAS  PubMed  Google Scholar 

  53. Woebking, B. et al. Functional role of transmembrane helix 6 in drug binding and transport by the ABC transporter MsbA. Biochemistry 47, 10904–10914 (2008).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank A. Mittal, C. Madhurantakam and E. Geertsma for helpful discussions and R. Dutzler for critical reading of the manuscript. We acknowledge B. Blattmann and C. Stutz-Ducommun from the NCCR crystallization facility for crystal screening and the staff of the X06SA beamline at the Swiss Light Source of the Paul Scherrer Institute for support during data collection. We thank H. van Veen (Department of Pharmacology, University of Cambridge) for the L. lactis NZ9000 ΔlmrA ΔlmrCD strain. This work was funded by the Swiss NCCR Structural Biology program, an Ambizione grant of the Swiss National Science Foundation (to M.A.S.) and a Forschungskredit of the University of Zürich (to M.A.S.). M.H. is affiliated with the PhD program in Biomolecular Structure and Mechanism of the Life Science Zürich Graduate School.

Author information

Authors and Affiliations

Authors

Contributions

M.H., M.G.G. and M.A.S. conceived the project. M.H. and M.A.S. cloned, purified and crystallized TM287/288 and carried out the functional assays. M.H., C.B. and M.A.S. collected and processed the crystallographic data. C.B., M.G.G. and M.A.S. solved the structure and built the model. All authors interpreted the structure and wrote the manuscript.

Corresponding authors

Correspondence to Markus G Grütter or Markus A Seeger.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 and Supplementary Methods (PDF 9323 kb)

Supplementary Video 1

Morph between the structure of the NBDs of TM287/288 (inward-facing conformation) and a homology model based on the Sav1866 structure (outward-facing conformation) as seen from the top. Catalytic residues of the consensus site and AMP-PNP are depicted as sticks. (AVI 9723 kb)

Supplementary Video 2

Morph between the structure of TM287/288 (inward-facing conformation) and a homology model based on the Sav1866 structure (outward-facing conformation) from two sides and from the top. AMP-PNP is shown as sticks. (AVI 20180 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hohl, M., Briand, C., Grütter, M. et al. Crystal structure of a heterodimeric ABC transporter in its inward-facing conformation. Nat Struct Mol Biol 19, 395–402 (2012). https://doi.org/10.1038/nsmb.2267

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2267

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing