Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

High-resolution structure of infectious prion protein: the final frontier

Abstract

Prions are the proteinaceous infectious agents responsible for the transmission of prion diseases. The main or sole component of prions is the misfolded prion protein (PrPSc), which is able to template the conversion of the host's natively folded form of the protein (PrPC). The detailed mechanism of prion replication and the high-resolution structure of PrPSc are unknown. The currently available information on PrPSc structure comes mostly from low-resolution biophysical techniques, which have resulted in quite divergent models. Recent advances in the production of infectious prions, using very pure recombinant protein, offer new hope for PrPSc structural studies. This review highlights the importance of, challenges for and recent progress toward elucidating the elusive structure of PrPSc, arguably the major pending milestone to reach in understanding prions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Potential roles of non-PrP cofactor molecules during conversion of PrPC into PrPSc.
Figure 2: Alternative models proposed for the structure of PrPSc.

Similar content being viewed by others

References

  1. Delez, A.L., Gustafson, D.P. & Luttrell, C.N. Some clinical and histological observations on scrapie in sheep. J. Am. Vet. Med. Assoc. 131, 439–446 (1957).

    CAS  PubMed  Google Scholar 

  2. Collinge, J. Prion diseases of humans and animals: their causes and molecular basis. Annu. Rev. Neurosci. 24, 519–550 (2001).

    CAS  PubMed  Google Scholar 

  3. Alper, T. Scrapie agent unlike viruses in size and susceptibility to inactivation by ionizing or ultraviolet radiation. Nature 317, 750 (1985).

    CAS  PubMed  Google Scholar 

  4. Gajdusek, D.C., Gibbs, C.J. & Alpers, M. Experimental transmission of a Kuru-like syndrome to chimpanzees. Nature 209, 794–796 (1966).

    CAS  PubMed  Google Scholar 

  5. Hope, J., Ritchie, L., Farquhar, C., Somerville, R. & Hunter, N. Bovine spongiform encephalopathy: a scrapie-like disease of British cattle. Prog. Clin. Biol. Res. 317, 659–667 (1989).

    CAS  PubMed  Google Scholar 

  6. Will, R.G. et al. A new variant of Creutzfeldt-Jakob disease in the UK. Lancet 347, 921–925 (1996).

    Article  CAS  PubMed  Google Scholar 

  7. Collinge, J. Variant Creutzfeldt-Jakob disease. Lancet 354, 317–323 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. Soto, C. & Castilla, J. The controversial protein-only hypothesis of prion propagation. Nat. Med. 10, S63–S67 (2004).

    PubMed  Google Scholar 

  9. Griffith, J.S. Self-replication and scrapie. Nature 215, 1043–1044 (1967).

    CAS  PubMed  Google Scholar 

  10. Bolton, D.C., McKinley, M.P. & Prusiner, S.B. Identification of a protein that purifies with the scrapie prion. Science 218, 1309–1311 (1982).

    CAS  PubMed  Google Scholar 

  11. McKinley, M.P., Bolton, D.C. & Prusiner, S.B. A protease-resistant protein is a structural component of the scrapie prion. Cell 35, 57–62 (1983).

    CAS  PubMed  Google Scholar 

  12. Stahl, N. et al. Structural studies of the scrapie prion protein using mass spectrometry and amino acid sequencing. Biochemistry 32, 1991–2002 (1993).

    CAS  PubMed  Google Scholar 

  13. Pan, K.M. et al. Conversion of alpha-helices into beta-sheets features in the formation of the scrapie prion proteins. Proc. Natl. Acad. Sci. USA 90, 10962–10966 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Prusiner, S.B. Prions. Proc. Natl. Acad. Sci. USA 95, 13363–13383 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Soto, C. Prion hypothesis: the end of the controversy? Trends Biochem. Sci. 36, 151–158 (2011).

    CAS  PubMed  Google Scholar 

  16. Büeler, H. et al. Mice devoid of PrP are resistant to scrapie. Cell 73, 1339–1347 (1993).

    PubMed  Google Scholar 

  17. Jackson, W.S. et al. Spontaneous generation of prion infectivity in fatal familial insomnia knockin mice. Neuron 63, 438–450 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Sigurdson, C.J. et al. De novo generation of a transmissible spongiform encephalopathy by mouse transgenesis. Proc. Natl. Acad. Sci. USA 106, 304–309 (2009).

    CAS  PubMed  Google Scholar 

  19. Castilla, J., Saá, P., Hetz, C. & Soto, C. In vitro generation of infectious scrapie prions. Cell 121, 195–206 (2005).

    CAS  PubMed  Google Scholar 

  20. Deleault, N.R., Harris, B.T., Rees, J.R. & Supattapone, S. From the cover: formation of native prions from minimal components in vitro. Proc. Natl. Acad. Sci. USA 104, 9741–9746 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang, F., Wang, X., Yuan, C.-G. & Ma, J. Generating a prion with bacterially expressed recombinant prion protein. Science 327, 1132–1135 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Castilla, J. et al. Cell-free propagation of prion strains. EMBO J. 27, 2557–2566 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Chiti, F. & Dobson, C.M. Protein misfolding, functional amyloid, and human disease. Annu. Rev. Biochem. 75, 333–366 (2006).

    CAS  PubMed  Google Scholar 

  24. Silveira, J.R. et al. The most infectious prion protein particles. Nature 437, 257–261 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Tixador, P. et al. The physical relationship between infectivity and prion protein aggregates is strain-dependent. PLoS Pathog. 6, e1000859 (2010).

    PubMed  PubMed Central  Google Scholar 

  26. Riek, R. et al. NMR structure of the mouse prion protein domain PrP(121–321). Nature 382, 180–182 (1996).

    CAS  PubMed  Google Scholar 

  27. Jarrett, J.T. & Lansbury, P.T. Jr. Seeding “one-dimensional crystallization” of amyloid: a pathogenic mechanism in Alzheimer's disease and scrapie? Cell 73, 1055–1058 (1993).

    CAS  PubMed  Google Scholar 

  28. Soto, C., Estrada, L. & Castilla, J. Amyloids, prions and the inherent infectious nature of misfolded protein aggregates. Trends Biochem. Sci. 31, 150–155 (2006).

    CAS  PubMed  Google Scholar 

  29. Caughey, B., Baron, G.S., Chesebro, B. & Jeffrey, M. Getting a grip on prions: oligomers, amyloids, and pathological membrane interactions. Annu. Rev. Biochem. 78, 177–204 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. McKinley, M.P., Braunfeld, M.B., Bellinger, C.G. & Prusiner, S.B. Molecular characteristics of prion rods purified from scrapie-infected hamster brains. J. Infect. Dis. 154, 110–120 (1986).

    CAS  PubMed  Google Scholar 

  31. Gabizon, R., McKinley, M.P. & Prusiner, S.B. Purified prion proteins and scrapie infectivity copartition into liposomes. Proc. Natl. Acad. Sci. USA 84, 4017–4021 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Riesner, D. et al. Disruption of prion rods generates 10-nm spherical particles having high alpha-helical content and lacking scrapie infectivity. J. Virol. 70, 1714–1722 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Wille, H., Zhang, G.F., Baldwin, M.A., Cohen, F.E. & Prusiner, S.B. Separation of scrapie prion infectivity from PrP amyloid polymers. J. Mol. Biol. 259, 608–621 (1996).

    CAS  PubMed  Google Scholar 

  34. Pastrana, M.A. et al. Isolation and characterization of a proteinase K-sensitive PrPSc fraction. Biochemistry 45, 15710–15717 (2006).

    CAS  PubMed  Google Scholar 

  35. Cobb, N.J. & Surewicz, W.K. Prion diseases and their biochemical mechanisms. Biochemistry 48, 2574–2585 (2009).

    CAS  PubMed  Google Scholar 

  36. Diringer, H. et al. Highly infectious purified preparations of disease-specific amyloid of transmissible spongiform encephalopathies are not devoid of nucleic acids of viral size. Intervirology 40, 238–246 (1997).

    CAS  PubMed  Google Scholar 

  37. Leffers, K.W. et al. Assembly of natural and recombinant prion protein into fibrils. Biol. Chem. 386, 569–580 (2005).

    CAS  PubMed  Google Scholar 

  38. Cobb, N.J., Apetri, A.C. & Surewicz, W.K. Prion protein amyloid formation under native-like conditions involves refolding of the C-terminal alpha-helical domain. J. Biol. Chem. 283, 34704–34711 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Baskakov, I.V., Legname, G., Baldwin, M.A., Prusiner, S.B. & Cohen, F.E. Pathway complexity of prion protein assembly into amyloid. J. Biol. Chem. 277, 21140–21148 (2002).

    CAS  PubMed  Google Scholar 

  40. Bocharova, O.V., Breydo, L., Parfenov, A.S., Salnikov, V.V. & Baskakov, I.V. In vitro conversion of full-length mammalian prion protein produces amyloid form with physical properties of PrPSc. J. Mol. Biol. 346, 645–659 (2005).

    CAS  PubMed  Google Scholar 

  41. Jackson, G.S. et al. Reversible conversion of monomeric human prion protein between native and fibrilogenic conformations. Science 283, 1935–1937 (1999).

    CAS  PubMed  Google Scholar 

  42. May, B.C., Govaerts, C., Prusiner, S.B. & Cohen, F.E. Prions: so many fibers, so little infectivity. Trends Biochem. Sci. 29, 162–165 (2004).

    CAS  PubMed  Google Scholar 

  43. Legname, G. et al. Synthetic mammalian prions. Science 305, 673–676 (2004).

    CAS  PubMed  Google Scholar 

  44. Westaway, D. et al. Degeneration of skeletal muscle, peripheral nerves, and the central nervous system in transgenic mice overexpressing wild-type prion proteins. Cell 76, 117–129 (1994).

    CAS  PubMed  Google Scholar 

  45. Chiesa, R., Piccardo, P., Ghetti, B. & Harris, D.A. Neurological illness in transgenic mice expressing a prion protein with an insertional mutation. Neuron 21, 1339–1351 (1998).

    CAS  PubMed  Google Scholar 

  46. Nazor, K.E. et al. Immunodetection of disease-associated mutant PrP, which accelerates disease in GSS transgenic mice. EMBO J. 24, 2472–2480 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Colby, D.W. et al. Design and construction of diverse mammalian prion strains. Proc. Natl. Acad. Sci. USA 106, 20417–20422 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Colby, D.W. et al. Protease-sensitive synthetic prions. PLoS Pathog. 6, e1000736 (2010).

    PubMed  PubMed Central  Google Scholar 

  49. Makarava, N. et al. Recombinant prion protein induces a new transmissible prion disease in wild-type animals. Acta Neuropathol. 119, 177–187 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Wille, H. et al. Natural and synthetic prion structure from X-ray fiber diffraction. Proc. Natl. Acad. Sci. USA 106, 16990–16995 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Piro, J.R. et al. Seeding specificity and ultrastructural characteristics of infectious recombinant prions. Biochemistry 50, 7111–7116 (2011).

    CAS  PubMed  Google Scholar 

  52. Smirnovas, V. et al. Structural organization of brain-derived mammalian prions examined by hydrogen-deuterium exchange. Nat. Struct. Mol. Biol. 18, 504–506 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Kocisko, D.A. et al. Cell-free formation of protease-resistant prion protein. Nature 370, 471–474 (1994).

    CAS  PubMed  Google Scholar 

  54. Saborio, G.P., Permanne, B. & Soto, C. Sensitive detection of pathological prion protein by cyclic amplification of protein misfolding. Nature 411, 810–813 (2001).

    CAS  PubMed  Google Scholar 

  55. Castilla, J. et al. Crossing the species barrier by PrPSc replication in vitro generates unique infectious prions. Cell 134, 757–768 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Meyerett, C. et al. In vitro strain adaptation of CWD prions by serial protein misfolding cyclic amplification. Virology 382, 267–276 (2008).

    CAS  PubMed  Google Scholar 

  57. Kim, J.I., Surewicz, K., Gambetti, P. & Surewicz, W.K. The role of glycophosphatidylinositol anchor in the amplification of the scrapie isoform of prion protein in vitro. FEBS Lett. 583, 3671–3675 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Wang, F. et al. Genetic informational RNA is not required for recombinant prion infectivity. J. Virol. 86, 1874–1876 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Kim, J.I. et al. Mammalian prions generated from bacterially expressed prion protein in the absence of any mammalian cofactors. J. Biol. Chem. 285, 14083–14087 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Supattapone, S. Biochemistry. What makes a prion infectious? Science 327, 1091–1092 (2010).

    CAS  PubMed  Google Scholar 

  61. Abid, K., Morales, R. & Soto, C. Cellular factors implicated in prion replication. FEBS Lett. 584, 2409–2414 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Deleault, N.R., Lucassen, R.W. & Supattapone, S. RNA molecules stimulate prion protein conversion. Nature 425, 717–720 (2003).

    CAS  PubMed  Google Scholar 

  63. Cordeiro, Y. & Silva, J.L. The hypothesis of the catalytic action of nucleic acid on the conversion of prion protein. Protein Pept. Lett. 12, 251–255 (2005).

    CAS  PubMed  Google Scholar 

  64. Caughey, B. Protease-resistant PrP accumulation and scrapie agent replication: a role for sulphated glycosaminoglycans? Biochem. Soc. Trans. 22, 163–167 (1994).

    CAS  PubMed  Google Scholar 

  65. Cordeiro, Y. et al. DNA converts cellular prion protein into the beta-sheet conformation and inhibits prion peptide aggregation. J. Biol. Chem. 276, 49400–49409 (2001).

    CAS  PubMed  Google Scholar 

  66. Adler, V. et al. Small, highly structured RNAs participate in the conversion of human recombinant PrP(Sen) to PrP(Res) in vitro. J. Mol. Biol. 332, 47–57 (2003).

    CAS  PubMed  Google Scholar 

  67. Geoghegan, J.C. et al. Selective incorporation of polyanionic molecules into hamster prions. J. Biol. Chem. 282, 36341–36353 (2007).

    CAS  PubMed  Google Scholar 

  68. Piro, J.R., Harris, B.T. & Supattapone, S. In situ photodegradation of incorporated polyanion does not alter prion infectivity. PLoS Pathog. 7, e1002001 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Nelson, R. & Eisenberg, D. Structural models of amyloid-like fibrils. Adv. Protein Chem. 73, 235–282 (2006).

    CAS  PubMed  Google Scholar 

  70. Nelson, R. et al. Structure of the cross-β spine of amyloid-like fibrils. Nature 435, 773–778 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Wasmer, C. et al. Amyloid fibrils of the HET-s(218–289) prion form a β solenoid with a triangular hydrophobic core. Science 319, 1523–1526 (2008).

    CAS  PubMed  Google Scholar 

  72. Safar, J., Roller, P.P., Gajdusek, D.C. & Gibbs, C.J. Jr. Conformational transitions, dissociation, and unfolding of scrapie amyloid (prion) protein. J. Biol. Chem. 268, 20276–20284 (1993).

    CAS  PubMed  Google Scholar 

  73. Caughey, B.W. et al. Secondary structure analysis of the scrapie-associated protein PrP 27–30 in water by infrared spectroscopy. Biochemistry 30, 7672–7680 (1991).

    CAS  PubMed  Google Scholar 

  74. Baldwin, M.A. et al. Spectroscopic characterization of conformational differences between PrPC and PrPSc: an α-helix to β-sheet transition. Phil. Trans. R. Soc. Lond. B 343, 435–441 (1994).

    CAS  Google Scholar 

  75. Aucouturier, P., Kascsak, R.J., Frangione, B. & Wisniewski, T. Biochemical and conformational variability of human prion strains in sporadic Creutzfeldt-Jakob disease. Neurosci. Lett. 274, 33–36 (1999).

    CAS  PubMed  Google Scholar 

  76. Caughey, B., Raymond, G.J. & Bessen, R.A. Strain-dependent differences in β-sheet conformations of abnormal prion protein. J. Biol. Chem. 273, 32230–32235 (1998).

    CAS  PubMed  Google Scholar 

  77. Chesebro, B. et al. Anchorless prion protein results in infectious amyloid disease without clinical scrapie. Science 308, 1435–1439 (2005).

    CAS  PubMed  Google Scholar 

  78. Baron, G.S. et al. Effect of glycans and the glycophosphatidylinositol anchor on strain dependent conformations of scrapie prion protein: improved purifications and infrared spectra. Biochemistry 50, 4479–4490 (2011).

    CAS  PubMed  Google Scholar 

  79. Parchi, P. et al. Molecular basis of phenotypic variability in sporadic Creutzfeldt-Jakob disease. Ann. Neurol. 39, 767–778 (1996).

    CAS  PubMed  Google Scholar 

  80. Cronier, S. et al. Detection and characterization of proteinase K-sensitive disease-related prion protein with thermolysin. Biochem. J. 416, 297–305 (2008).

    CAS  PubMed  Google Scholar 

  81. Supattapone, S. et al. Prion protein of 106 residues creates an artifical transmission barrier for prion replication in transgenic mice. Cell 96, 869–878 (1999).

    CAS  PubMed  Google Scholar 

  82. Bessen, R.A. & Marsh, R.F. Distinct PrP properties suggest the molecular basis of strain variation in transmissible mink encephalopathy. J. Virol. 68, 7859–7868 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Peretz, D. et al. A conformational transition at the N terminus of the prion protein features in formation of the scrapie isoform. J. Mol. Biol. 273, 614–622 (1997).

    CAS  PubMed  Google Scholar 

  84. Williamson, R.A. et al. Mapping the prion protein using recombinant antibodies. J. Virol. 72, 9413–9418 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Merz, P.A., Somerville, R.A., Wisniewski, H.M., Manuelidis, L. & Manuelidis, E.E. Scrapie-associated fibrils in Creutzfeldt-Jakob disease. Nature 306, 474–476 (1983).

    CAS  PubMed  Google Scholar 

  86. Sim, V.L. & Caughey, B. Ultrastructures and strain comparison of under-glycosylated scrapie prion fibrils. Neurobiol. Aging 30, 2031–2042 (2009).

    CAS  PubMed  Google Scholar 

  87. Ayers, J.I. et al. The strain-encoded relationship between PrP replication, stability and processing in neurons is predictive of the incubation period of disease. PLoS Pathog. 7, e1001317 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Deleault, A.M., Deleault, N.R., Harris, B.T., Rees, J.R. & Supattapone, S. The effects of prion protein proteolysis and disaggregation on the strain properties of hamster scrapie. J. Gen. Virol. 89, 2642–2650 (2008).

    CAS  PubMed  Google Scholar 

  89. Eanes, E.D. & Glenner, G.G. X-ray diffraction studies on amyloid filaments. J. Histochem. Cytochem. 16, 673–677 (1968).

    CAS  PubMed  Google Scholar 

  90. Govaerts, C., Wille, H., Prusiner, S.B. & Cohen, F.E. Evidence for assembly of prions with left-handed β-helices into trimers. Proc. Natl. Acad. Sci. USA 101, 8342–8347 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Serag, A.A., Altenbach, C., Gingery, M., Hubbell, W.L. & Yeates, T.O. Arrangement of subunits and ordering of β-strands in an amyloid sheet. Nat. Struct. Biol. 9, 734–739 (2002).

    CAS  PubMed  Google Scholar 

  92. Cobb, N.J., Sonnichsen, F.D., McHaourab, H. & Surewicz, W.K. Molecular architecture of human prion protein amyloid: a parallel, in-register β-structure. Proc. Natl. Acad. Sci. USA 104, 18946–18951 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Schuler, B., Rachel, R. & Seckler, R. Formation of fibrous aggregates from a non-native intermediate: the isolated P22 tailspike β-helix domain. J. Biol. Chem. 274, 18589–18596 (1999).

    CAS  PubMed  Google Scholar 

  94. Junker, M. et al. Pertactin β-helix folding mechanism suggests common themes for the secretion and folding of autotransporter proteins. Proc. Natl. Acad. Sci. USA 103, 4918–4923 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. DeMarco, M.L. & Daggett, V. From conversion to aggregation: protofibril formation of the prion protein. Proc. Natl. Acad. Sci. USA 101, 2293–2298 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Surewicz, W.K., Mantsch, H.H. & Chapman, D. Determination of protein secondary structure by Fourier transform infrared spectroscopy: a critical assessment. Biochemistry 32, 389–394 (1993).

    CAS  PubMed  Google Scholar 

  97. Wilder, C.L., Friedrich, A.D., Potts, R.O., Daumy, G.O. & Francoeur, M.L. Secondary structural analysis of two recombinant murine proteins, interleukins 1 alpha and 1 beta: is infrared spectroscopy sufficient to assign structure? Biochemistry 31, 27–31 (1992).

    CAS  PubMed  Google Scholar 

  98. Brundin, P., Melki, R. & Kopito, R. Prion-like transmission of protein aggregates in neurodegenerative diseases. Nat. Rev. Mol. Cell Biol. 11, 301–307 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Frost, B. & Diamond, M.I. Prion-like mechanisms in neurodegenerative diseases. Nat. Rev. Neurosci. 11, 155–159 (2010).

    CAS  PubMed  Google Scholar 

  100. Aguzzi, A. Cell biology: beyond the prion principle. Nature 459, 924–925 (2009).

    CAS  PubMed  Google Scholar 

  101. Westermark, G.T. & Westermark, P. Prion-like aggregates: infectious agents in human disease. Trends Mol. Med. 16, 501–507 (2010).

    CAS  PubMed  Google Scholar 

  102. Soto, C. & Estrada, L.D. Protein misfolding and neurodegeneration. Arch. Neurol. 65, 184–189 (2008).

    PubMed  Google Scholar 

  103. Wickner, R.B. et al. Prions: proteins as genes and infectious entities. Genes Dev. 18, 470–485 (2004).

    CAS  PubMed  Google Scholar 

  104. Uptain, S.M. & Lindquist, S. Prions as protein-based genetic elements. Annu. Rev. Microbiol. 56, 703–741 (2002).

    CAS  PubMed  Google Scholar 

  105. Halfmann, R., Alberti, S. & Lindquist, S. Prions, protein homeostasis, and phenotypic diversity. Trends Cell Biol. 20, 125–133 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Halfmann, R. et al. Prions are a common mechanism for phenotypic inheritance in wild yeasts. Nature 482, 363–368 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Toyama, B.H., Kelly, M.J., Gross, J.D. & Weissman, J.S. The structural basis of yeast prion strain variants. Nature 449, 233–237 (2007).

    CAS  PubMed  Google Scholar 

  108. Collinge, J. & Clarke, A.R. A general model of prion strains and their pathogenicity. Science 318, 930–936 (2007).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are very grateful to V. Daggett and W. Chen from the University of Washington in Seattle for kindly providing a model for the β-spiral structure of PrPSc. We also want to thank W. Surewicz from Case Western Reserve University for providing high-resolution pictures for the extended in-register β-sheet model and H. Wille from University of California, San Francisco, for providing structural coordinates for the β-helix model. This work was funded in part by US National Institutes of Health grant R01NS041973 to C.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Soto.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Diaz-Espinoza, R., Soto, C. High-resolution structure of infectious prion protein: the final frontier. Nat Struct Mol Biol 19, 370–377 (2012). https://doi.org/10.1038/nsmb.2266

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2266

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing