Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure of the ternary initiation complex aIF2–GDPNP–methionylated initiator tRNA

Abstract

Eukaryotic and archaeal translation initiation factor 2 (e/aIF2) is a heterotrimeric GTPase that has a crucial role in the selection of the correct start codon on messenger RNA. We report the 5-Å resolution crystal structure of the ternary complex formed by archaeal aIF2 from Sulfolobus solfataricus, the GTP analog GDPNP and methionylated initiator tRNA. The 3D model is further supported by solution studies using small-angle X-ray scattering. The tRNA is bound by the α and γ subunits of aIF2. Contacts involve the elbow of the tRNA and the minor groove of the acceptor stem, but not the T-stem minor groove. We conclude that despite considerable structural homology between the core γ subunit of aIF2 and the elongation factor EF1A, these two G proteins of the translation apparatus use very different tRNA-binding strategies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of the ternary initiation complex.
Figure 2: Residues of aIF2 possibly involved in tRNA binding.
Figure 3: Solution studies using SAXS.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

References

  1. Hinnebusch, A.G. Molecular mechanism of scanning and start codon selection in eukaryotes. Microbiol. Mol. Biol. Rev. 75, 434–467 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Jackson, R.J., Hellen, C.U. & Pestova, T.V. The mechanism of eukaryotic translation initiation and principles of its regulation. Nat. Rev. Mol. Cell Biol. 11, 113–127 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Algire, M.A., Maag, D. & Lorsch, J.R. Pi release from eIF2, not GTP hydrolysis, is the step controlled by start-site selection during eukaryotic translation initiation. Mol. Cell 20, 251–262 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Unbehaun, A., Borukhov, S.I., Hellen, C.U. & Pestova, T.V. Release of initiation factors from 48S complexes during ribosomal subunit joining and the link between establishment of codon-anticodon base-pairing and hydrolysis of eIF2-bound GTP. Genes Dev. 18, 3078–3093 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Dorris, D.R., Erickson, F.L. & Hannig, E.M. Mutations in GCD11, the structural gene for eIF-2γ in yeast, alter translational regulation of GCN4 and the selection of the start site for protein synthesis. EMBO J. 14, 2239–2249 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Erickson, F.L. & Hannig, E.M. Ligand interactions with eukaryotic translation initiation factor 2: role of the γ-subunit. EMBO J. 15, 6311–6320 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Huang, H.K., Yoon, H., Hannig, E.M. & Donahue, T.F. GTP hydrolysis controls stringent selection of the AUG start codon during translation initiation in Saccharomyces cerevisiae. Genes Dev. 11, 2396–2413 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yatime, L., Schmitt, E., Blanquet, S. & Mechulam, Y. Functional molecular mapping of archaeal translation initiation factor 2. J. Biol. Chem. 279, 15984–15993 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Pedullà, N. et al. The archaeal eIF2 homologue: functional properties of an ancient translation initiation factor. Nucleic Acids Res. 33, 1804–1812 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Yatime, L., Mechulam, Y., Blanquet, S. & Schmitt, E. Structural switch of the γ subunit in an archaeal aIF2αγ heterodimer. Structure 14, 119–128 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Nika, J., Rippel, S. & Hannig, E.M. Biochemical analysis of the eIF2βγ complex reveals a structural function for eIF2α in catalyzed nucleotide exchange. J. Biol. Chem. 276, 1051–1056 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Naveau, M., Lazennec-Schurdevin, C., Panvert, M., Mechulam, Y. & Schmitt, E. tRNA binding properties of eukaryotic translation initiation factor 2 from Encephalitozoon cuniculi. Biochemistry 49, 8680–8688 (2010).

    Article  CAS  PubMed  Google Scholar 

  13. Schmitt, E., Blanquet, S. & Mechulam, Y. The large subunit of initiation factor aIF2 is a close structural homologue of elongation factors. EMBO J. 21, 1821–1832 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yatime, L., Mechulam, Y., Blanquet, S. & Schmitt, E. Structure of an archaeal heterotrimeric initiation factor 2 reveals a nucleotide state between the GTP and the GDP states. Proc. Natl. Acad. Sci. USA 104, 18445–18450 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Roll-Mecak, A., Alone, P., Cao, C., Dever, T.E. & Burley, S.K. X-ray structure of translation initiation factor eIF2γ: implications for tRNA and eIF2α binding. J. Biol. Chem. 279, 10634–10642 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Sokabe, M., Yao, M., Sakai, N., Toya, S. & Tanaka, I. Structure of archaeal translational initiation factor 2 βγ–GDP reveals significant conformational change of the β-subunit and switch 1 region. Proc. Natl. Acad. Sci. USA 103, 13016–13021 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Stolboushkina, E. et al. Crystal structure of the intact archaeal translation initiation factor 2 demonstrates very high conformational flexibility in the α- and β-subunits. J. Mol. Biol. 382, 680–691 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. Schmitt, E., Naveau, M. & Mechulam, Y. Eukaryotic and archaeal translation initiation factor 2: a heterotrimeric tRNA carrier. FEBS Lett. 584, 405–412 (2010).

    Article  CAS  PubMed  Google Scholar 

  19. Nissen, P. et al. Crystal structure of the ternary complex of Phe-tRNAPhe, EF-Tu, and a GTP analog. Science 270, 1464–1472 (1995).

    Article  CAS  PubMed  Google Scholar 

  20. Nikonov, O. et al. New insights into the interactions of the translation initiation factor 2 from archaea with guanine nucleotides and initiator tRNA. J. Mol. Biol. 373, 328–336 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Shin, B.S. et al. Initiation factor eIF2γ promotes eIF2–GTP–Met–tRNAiMet ternary complex binding to the 40S ribosome. Nat. Struct. Mol. Biol. 18, 1227–1234 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Schmitt, E., Panvert, M., Blanquet, S. & Mechulam, Y. Crystal structure of methionyl-tRNAfMet transformylase complexed with the initiator formyl-methionyl-tRNAfMet. EMBO J. 17, 6819–6826 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ito, T., Marintchev, A. & Wagner, G. Solution structure of human initiation factor eIF2α reveals homology to the elongation factor eEF1B. Structure 12, 1693–1704 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Yatime, L., Schmitt, E., Blanquet, S. & Mechulam, Y. Structure-function relationships of the intact aIF2α subunit from the archaeon Pyrococcus abyssi. Biochemistry 44, 8749–8756 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Farruggio, D., Chaudhuri, J., Maitra, U. & RajBhandary, U.L. The A1 x U72 base pair conserved in eukaryotic initiator tRNAs is important specifically for binding to the eukaryotic translation initiation factor eIF2. Mol. Cell. Biol. 16, 4248–4256 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kapp, L.D. & Lorsch, J.R. GTP-dependent recognition of the methionine moiety on initiator tRNA by translation factor eIF2. J. Mol. Biol. 335, 923–936 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Donahue, T.F., Cigan, A.M., Pabich, E.K. & Valavicius, B.C. Mutations at a Zn(II) finger motif in the yeast eIF-2β gene alter ribosomal start-site selection during the scanning process. Cell 54, 621–632 (1988).

    Article  CAS  PubMed  Google Scholar 

  28. Cigan, A.M., Pabich, E.K., Feng, L. & Donahue, T.F. Yeast translation initiation suppressor sui2 encodes the α subunit of eukaryotic initiation factor 2 and shares sequence identity with the human α subunit. Proc. Natl. Acad. Sci. USA 86, 2784–2788 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ben-Shem, A., Jenner, L., Yusupova, G. & Yusupov, M. Crystal structure of the eukaryotic ribosome. Science 330, 1203–1209 (2010).

    Article  CAS  PubMed  Google Scholar 

  30. Selmer, M. et al. Structure of the 70S ribosome complexed with mRNA and tRNA. Science 313, 1935–1942 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Simonetti, A. et al. Structure of the 30S translation initiation complex. Nature 455, 416–420 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. Julián, P. et al. The Cryo-EM structure of a complete 30S translation initiation complex from Escherichia coli. PLoS Biol. 9, e1001095 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Choi, S.K., Lee, J.H., Zoll, W.L., Merrick, W.C. & Dever, T.E. Promotion of met-tRNAiMet binding to ribosomes by yIF2, a bacterial IF2 homolog in yeast. Science 280, 1757–1760 (1998).

    Article  CAS  PubMed  Google Scholar 

  34. Kyrpides, N.C. & Woese, C.R. Universally conserved translation initiation factors. Proc. Natl. Acad. Sci. USA 95, 224–228 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Pestova, T.V. et al. The joining of ribosomal subunits in eukaryotes requires eIF5B. Nature 403, 332–335 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Mechulam, Y., Guillon, L., Yatime, L., Blanquet, S. & Schmitt, E. Protection-based assays to measure aminoacyl-tRNA binding to translation initiation factors. Methods Enzymol. 430, 265–281 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Kabsch, W.J. Evaluation of single-crystal X-ray diffraction data from a position-sensitive detector. J. Appl. Crystallogr. 21, 916–924 (1988).

    Article  CAS  Google Scholar 

  38. Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50, 760–763 (1994).

  39. Storoni, L.C., McCoy, A.J. & Read, R.J. Likelihood-enhanced fast rotation functions. Acta Crystallogr. D Biol. Crystallogr. 60, 432–438 (2004).

    Article  PubMed  Google Scholar 

  40. Barraud, P., Schmitt, E., Mechulam, Y., Dardel, F. & Tisne, C. A unique conformation of the anticodon stem-loop is associated with the capacity of tRNAfMet to initiate protein synthesis. Nucleic Acids Res. 36, 4894–4901 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Emsley, P., Lohkamp, B., Scott, W.G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Adams, P.D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Laskowski, R.A., Mac Arthur, M.W., Moss, D.S. & Thornton, J.M. PROCHECK: a program to check the stereochemical quality of protein structure. J. Appl. Crystallogr. 26, 283–291 (1993).

    Article  CAS  Google Scholar 

  44. David, G. & Perez, J. Combined sampler robot and high-performance liquid chromatography: a fully automated system for biological small-angle X-ray scattering experiments at the Synchrotron SOLEIL SWING beamline. J. Appl. Crystallogr. 42, 892–900 (2009).

    Article  CAS  Google Scholar 

  45. Konarev, P.V., Volkov, V.V., Petoukhov, M.V. & Svergun, D.I. ATSAS 2.1, a program package for small-angle scattering data analysis. J. Appl. Crystallogr. 39, 277–286 (2006).

    Article  CAS  Google Scholar 

  46. Svergun, D.I., Barberato, C. & Koch, M.H.J. CRYSOL - a program to evaluate X-ray solution scattering of biological macromolecules from atomic coordinates. J. Appl. Crystallogr. 28, 768–773 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Physique et Chimie du Vivant program of Agence Nationale de la Recherche (MASTIC project).

Author information

Authors and Affiliations

Authors

Contributions

E.S. and Y.M. designed the research; E.S., M.P., C.L.-S., P.-D.C. and Y.M. carried out the experiments; E.S., Y.M., J.P. and A.T. analyzed the data; E.S. and Y.M. wrote the paper; and all authors contributed to editing the manuscript.

Corresponding author

Correspondence to Emmanuelle Schmitt.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 and Supplementary Methods (PDF 1552 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmitt, E., Panvert, M., Lazennec-Schurdevin, C. et al. Structure of the ternary initiation complex aIF2–GDPNP–methionylated initiator tRNA. Nat Struct Mol Biol 19, 450–454 (2012). https://doi.org/10.1038/nsmb.2259

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2259

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing