Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Control of RNP motility and localization by a splicing-dependent structure in oskar mRNA

Abstract

oskar RNA localization to the posterior pole of the Drosophila melanogaster oocyte requires splicing of the first intron and the exon junction complex (EJC) core proteins. The functional link between splicing, EJC deposition and oskar localization has been unclear. Here we demonstrate that the EJC associates with oskar mRNA upon splicing in vitro and that Drosophila EJC deposition is constitutive and conserved. Our in vivo analysis reveals that splicing creates the spliced oskar localization element (SOLE), whose structural integrity is crucial for ribonucleoprotein motility and localization in the oocyte. Splicing thus has a dual role in oskar mRNA localization: assembling the SOLE and depositing the EJC required for mRNA transport. The SOLE complements the EJC in formation of a functional unit that, together with the oskar 3′ UTR, maintains proper kinesin-based motility of oskar mRNPs and posterior mRNA targeting.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The Drosophila EJC assembles on oskar mRNAs ~20–24 nt upstream of splice junctions in vitro.
Figure 2: The oskar coding region and oskar intron 1 splicing are necessary for mRNA posterior localization.
Figure 3: 28 nucleotides flanking the first oskar intron promote mRNA localization to the posterior pole.
Figure 4: Integrity of the SOLE proximal stem is required for posterior transport of oskar mRNA.
Figure 5: An intact SOLE is not required for pre-mRNA splicing or EJC deposition.
Figure 6: Tracking of motile wild-type and SOLE mutant oskar RNPs in living oocytes.

Similar content being viewed by others

References

  1. Besse, F. & Ephrussi, A. Translational control of localized mRNAs: restricting protein synthesis in space and time. Nat. Rev. Mol. Cell Biol. 9, 971–980 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Martin, K.C. & Ephrussi, A. mRNA localization: gene expression in the spatial dimension. Cell 136, 719–730 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. St Johnston, D. Moving messages: the intracellular localization of mRNAs. Nat. Rev. Mol. Cell Biol. 6, 363–375 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Pokrywka, N.J. & Stephenson, E.C. Microtubules are a general component of mRNA localization systems in Drosophila oocytes. Dev. Biol. 167, 363–370 (1995).

    Article  CAS  PubMed  Google Scholar 

  5. Brendza, R.P., Serbus, L.R., Duffy, J.B. & Saxton, W.M. A function for kinesin I in the posterior transport of oskar mRNA and Staufen protein. Science 289, 2120–2122 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zimyanin, V.L. et al. In vivo imaging of oskar mRNA transport reveals the mechanism of posterior localization. Cell 134, 843–853 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kim-Ha, J., Webster, P.J., Smith, J.L. & Macdonald, P.M. Multiple RNA regulatory elements mediate distinct steps in localization of oskar mRNA. Development 119, 169–178 (1993).

    CAS  PubMed  Google Scholar 

  8. Hachet, O. & Ephrussi, A. Splicing of oskar RNA in the nucleus is coupled to its cytoplasmic localization. Nature 428, 959–963 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Mohr, S.E., Dillon, S.T. & Boswell, R.E. The RNA-binding protein Tsunagi interacts with Mago Nashi to establish polarity and localize oskar mRNA during Drosophila oogenesis. Genes Dev. 15, 2886–2899 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Hachet, O. & Ephrussi, A. Drosophila Y14 shuttles to the posterior of the oocyte and is required for oskar mRNA transport. Curr. Biol. 11, 1666–1674 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Newmark, P.A. & Boswell, R.E. The mago nashi locus encodes an essential product required for germ plasm assembly in Drosophila. Development 120, 1303–1313 (1994).

    CAS  PubMed  Google Scholar 

  12. van Eeden, F.J., Palacios, I.M., Petronczki, M., Weston, M.J. & St Johnston, D. Barentsz is essential for the posterior localization of oskar mRNA and colocalizes with it to the posterior pole. J. Cell Biol. 154, 511–524 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Palacios, I.M., Gatfield, D., St Johnston, D. & Izaurralde, E. An eIF4AIII-containing complex required for mRNA localization and nonsense-mediated mRNA decay. Nature 427, 753–757 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Chan, C.C. et al. eIF4A3 is a novel component of the exon junction complex. RNA 10, 200–209 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Le Hir, H., Gatfield, D., Izaurralde, E. & Moore, M.J. The exon-exon junction complex provides a binding platform for factors involved in mRNA export and nonsense-mediated mRNA decay. EMBO J. 20, 4987–4997 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kataoka, N. et al. Pre-mRNA splicing imprints mRNA in the nucleus with a novel RNA-binding protein that persists in the cytoplasm. Mol. Cell 6, 673–682 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Dreyfuss, G., Kim, V.N. & Kataoka, N. Messenger-RNA-binding proteins and the messages they carry. Nat. Rev. Mol. Cell Biol. 3, 195–205 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Ballut, L. et al. The exon junction core complex is locked onto RNA by inhibition of eIF4AIII ATPase activity. Nat. Struct. Mol. Biol. 12, 861–869 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Le Hir, H., Izaurralde, E., Maquat, L.E. & Moore, M.J. The spliceosome deposits multiple proteins 20–24 nucleotides upstream of mRNA exon-exon junctions. EMBO J. 19, 6860–6869 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kataoka, N., Diem, M.D., Kim, V.N., Yong, J. & Dreyfuss, G. Magoh, a human homolog of Drosophila mago nashi protein, is a component of the splicing-dependent exon-exon junction complex. EMBO J. 20, 6424–6433 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kim, V.N., Kataoka, N. & Dreyfuss, G. Role of the nonsense-mediated decay factor hUpf3 in the splicing-dependent exon-exon junction complex. Science 293, 1832–1836 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Cha, B.J., Serbus, L.R., Koppetsch, B.S. & Theurkauf, W.E. Kinesin I–dependent cortical exclusion restricts pole plasm to the oocyte posterior. Nat. Cell Biol. 4, 592–598 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. González-Reyes, A., Elliott, H. & St Johnston, D. Polarization of both major body axes in Drosophila by gurken-torpedo signalling. Nature 375, 654–658 (1995).

    Article  PubMed  Google Scholar 

  24. Roth, S., Neuman-Silberberg, F.S., Barcelo, G. & Schupbach, T. cornichon and the EGF receptor signaling process are necessary for both anterior-posterior and dorsal-ventral pattern formation in Drosophila. Cell 81, 967–978 (1995).

    Article  CAS  PubMed  Google Scholar 

  25. Jambhekar, A. & Derisi, J.L. Cis-acting determinants of asymmetric, cytoplasmic RNA transport. RNA 13, 625–642 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Daigle, N. & Ellenberg, J. LambdaN-GFP: an RNA reporter system for live-cell imaging. Nat. Methods 4, 633–636 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Herold, N. et al. Conservation of the protein composition and electron microscopy structure of Drosophila melanogaster and human spliceosomal complexes. Mol. Cell. Biol. 29, 281–301 (2009).

    Article  CAS  PubMed  Google Scholar 

  28. Saulière, J. et al. The exon junction complex differentially marks spliced junctions. Nat. Struct. Mol. Biol. 17, 1269–1271 (2010).

    Article  PubMed  Google Scholar 

  29. Loiseau, P., Davies, T., Williams, L.S., Mishima, M. & Palacios, I.M. Drosophila PAT1 is required for Kinesin-1 to transport cargo and to maximize its motility. Development 137, 2763–2772 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Welte, M.A., Gross, S.P., Postner, M., Block, S.M. & Wieschaus, E.F. Developmental regulation of vesicle transport in Drosophila embryos: forces and kinetics. Cell 92, 547–557 (1998).

    Article  CAS  PubMed  Google Scholar 

  31. Navarro, C., Puthalakath, H., Adams, J.M., Strasser, A. & Lehmann, R. Egalitarian binds dynein light chain to establish oocyte polarity and maintain oocyte fate. Nat. Cell Biol. 6, 427–435 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. MacDonald, P.M. bicoid mRNA localization signal: phylogenetic conservation of function and RNA secondary structure. Development 110, 161–171 (1990).

    CAS  PubMed  Google Scholar 

  33. Cohen, R.S., Zhang, S. & Dollar, G.L. The positional, structural, and sequence requirements of the Drosophila TLS RNA localization element. RNA 11, 1017–1029 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bullock, S.L., Ringel, I., Ish-Horowicz, D. & Lukavsky, P.J. A′-form RNA helices are required for cytoplasmic mRNA transport in Drosophila. Nat. Struct. Mol. Biol. 17, 703–709 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Juhn, J. & James, A.A. oskar gene expression in the vector mosquitoes, Anopheles gambiae and Aedes aegypti. Insect Mol. Biol. 15, 363–372 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Juhn, J., Marinotti, O., Calvo, E. & James, A.A. Gene structure and expression of nanos (nos) and oskar (osk) orthologues of the vector mosquito, Culex quinquefasciatus. Insect Mol. Biol. 17, 545–552 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Goltsev, Y., Hsiong, W., Lanzaro, G. & Levine, M. Different combinations of gap repressors for common stripes in Anopheles and Drosophila embryos. Dev. Biol. 275, 435–446 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Horne-Badovinac, S. & Bilder, D. Dynein regulates epithelial polarity and the apical localization of stardust A mRNA. PLoS Genet. 4, e8 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Horton, R.M., Hunt, H.D., Ho, S.N., Pullen, J.K. & Pease, L.R. Engineering hybrid genes without the use of restriction enzymes: gene splicing by overlap extension. Gene 77, 61–68 (1989).

    Article  CAS  PubMed  Google Scholar 

  40. Rio, D.C. Accurate and efficient pre-mRNA splicing in Drosophila cell-free extracts. Proc. Natl. Acad. Sci. USA 85, 2904–2908 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Marchand, V. et al. Identification of protein partners of the human immunodeficiency virus 1 tat/rev exon 3 leads to the discovery of a new HIV-1 splicing regulator, protein hnRNP K. RNA Biol. 8, 325–342 (2011).

    Article  CAS  PubMed  Google Scholar 

  42. Nekrasov, M. et al. Pcl-PRC2 is needed to generate high levels of H3-K27 trimethylation at Polycomb target genes. EMBO J. 26, 4078–4088 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Prasad, M., Jang, A.C., Starz-Gaiano, M., Melani, M. & Montell, D.J. A protocol for culturing Drosophila melanogaster stage 9 egg chambers for live imaging. Nat. Protoc. 2, 2467–2473 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank H. Le Hir (Institut de Biologie de l'Ecole Normale Supérieure, Paris, France) for his gift of TAP-tagged EJC proteins; R. Lührmann (Max-Planck-Institut für Biophysikalische Chemie, Göttingen, Germany) and D. Rio (University of California, Berkeley, USA) for Kc cell nuclear extracts; J. Ellenberg (the European Molecular Biology Laboratory (EMBL), Heidelberg, Germany) for the gift of λN-GFP and boxB reporter vectors; D. St Johnston (The Wellcome Trust, Cancer Research UK Gurdon Institute, Cambridge, UK) for the oskMS2-GFP; D. Brunner (Institute of Molecular Life Sciences, University of Zürich, Switzerland) for the UASp-EB1-mCherry fly stocks; the EMBL GeneCore Facility for DNA sequencing, the EMBL Advanced Light Microscopy Facility for the use of microscopes, and A.-M. Voie and S. Müller for fly transgenesis. We also thank A. Cyrklaff for assistance with embryo collection, S.-J. Fan for the gift of the pUASpλN-GFP plasmid, M. Jeske for inspiration in naming of transgenes, A. Obrdlik, M. Hentze and I. Telley for critical discussions and comments on the manuscript. S.G. was supported in part by a Deutsche Forschungsgemeinschaft SPP grant (DFG EP 37/1-3) to A.E.; V.M. by a fellowship from the Fondation pour la Recherche Médicale; and I.G. by an EMBL Interdisciplinary Postdoctoral fellowship (EIPOD) and an EMBO Long-term Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

S.G. generated the transgenes and carried out all aspects of the in situ analysis of mRNA localization. V.M. generated Drosophila embryo nuclear extracts, established the in vitro splicing assay, and performed the RNase protection experiments and immunoprecipitations. I.G. performed the time-lapse imaging of live oocytes and the statistical analyses. S.G., V.M., I.G. and A.E. conceived the experiments, analyzed the data and wrote the manuscript.

Corresponding author

Correspondence to Anne Ephrussi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7, Supplementary Tables 1–3 and Supplementary Methods (PDF 14024 kb)

Supplementary Video 1

Motility of oskΔi(2,3) RNPs in living stage-9 oocyte (AVI 4849 kb)

Supplementary Video 2

Motility of oskMS2 RNPs in living stage-9 oocyte (AVI 4744 kb)

Supplementary Video 3

Motility of colchicine treated oskΔi(2,3) RNPs in living stage 9 oocyte (AVI 4814 kb)

Supplementary Video 4

Motility of oskΔi(1,2,3) RNPs in living stage-9 oocyte (AVI 4836 kb)

Supplementary Video 5

Motility of oskPSLz RNPs in living stage-9 oocyte (AVI 4864 kb)

Supplementary Video 6

Motility of oskPSLzc RNPs in living stage-9 oocyte (AVI 3502 kb)

Supplementary Video 7

Viability and development of a dissected stage 8-9 egg chamber expressing oskΔi(2,3)*GFP (AVI 10803 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghosh, S., Marchand, V., Gáspár, I. et al. Control of RNP motility and localization by a splicing-dependent structure in oskar mRNA. Nat Struct Mol Biol 19, 441–449 (2012). https://doi.org/10.1038/nsmb.2257

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2257

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing