Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A telomere-dependent DNA damage checkpoint induced by prolonged mitotic arrest

Abstract

Telomere shortening and disruption of telomeric components are pathways that induce telomere deprotection. Here we describe another pathway, in which prolonged mitotic arrest induces damage signals at telomeres in human cells. Exposure to microtubule drugs, kinesin inhibitors, proteasome inhibitors or the disruption of proper chromosome cohesion resulted in the formation of damage foci at telomeres. Induction of mitotic telomere deprotection coincided with dissociation of TRF2 from telomeres, telomeric 3′-overhang degradation and ATM activation, and deprotection could be suppressed by TRF2 overexpression or inhibition of Aurora B kinase. Normal cells that escaped from prolonged mitotic arrest halted in the following G1 phase, whereas cells lacking p53 continued to cycle and became aneuploid. We propose a telomere-dependent mitotic-duration monitoring system that reacts to improper progression through mitosis.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Prolonged mitotic arrest causes telomere deprotection.
Figure 2: Mitotic inhibitors cause telomere deprotection.
Figure 3: Prolonged mitotic arrest causes the loss of 3′ overhangs and ATM activation.
Figure 4: Mitotic TIF formation is ATM dependent.
Figure 5: Mitotic TIF are dependent on TRF2 removal.
Figure 6: Checkpoint activation by mitotic telomere deprotection.
Figure 7: Mitotic TIF formation is dependent on Aurora B kinase but not on the SAC.
Figure 8: Model for a telomere-based mitotic duration checkpoint.

Similar content being viewed by others

References

  1. de Lange, T. How telomeres solve the end-protection problem. Science 326, 948–952 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. van Steensel, B., Smogorzewska, A. & de Lange, T. TRF2 protects human telomeres from end-to-end fusions. Cell 92, 401–413 (1998).

    Article  CAS  PubMed  Google Scholar 

  3. Karlseder, J., Broccoli, D., Dai, Y., Hardy, S. & de Lange, T. p53- and ATM-dependent apoptosis induced by telomeres lacking TRF2. Science 283, 1321–1325 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Denchi, E.L. & de Lange, T. Protection of telomeres through independent control of ATM and ATR by TRF2 and POT1. Nature 448, 1068–1071 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Guo, X. et al. Dysfunctional telomeres activate an ATM-ATR-dependent DNA damage response to suppress tumorigenesis. EMBO J. 26, 4709–4719 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Takai, H., Smogorzewska, A. & de Lange, T. DNA damage foci at dysfunctional telomeres. Curr. Biol. 13, 1549–1556 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. d'Adda di Fagagna, F. et al. A DNA damage checkpoint response in telomere-initiated senescence. Nature 426, 194–198 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Cesare, A.J. et al. Spontaneous occurrence of telomeric DNA damage response in the absence of chromosome fusions. Nat. Struct. Mol. Biol. 16, 1244–1251 (2009).

    Article  CAS  PubMed  Google Scholar 

  9. Rieder, C.L. & Maiato, H. Stuck in division or passing through: what happens when cells cannot satisfy the spindle assembly checkpoint. Dev. Cell 7, 637–651 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Brito, D.A. & Rieder, C.L. Mitotic checkpoint slippage in humans occurs via cyclin B destruction in the presence of an active checkpoint. Curr. Biol. 16, 1194–1200 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gascoigne, K.E. & Taylor, S.S. Cancer cells display profound intra- and interline variation following prolonged exposure to antimitotic drugs. Cancer Cell 14, 111–122 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Schvartzman, J.M., Sotillo, R. & Benezra, R. Mitotic chromosomal instability and cancer: mouse modelling of the human disease. Nat. Rev. Cancer 10, 102–115 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ganem, N.J., Storchova, Z. & Pellman, D. Tetraploidy, aneuploidy and cancer. Curr. Opin. Genet. Dev. 17, 157–162 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Ganem, N.J. & Pellman, D. Limiting the proliferation of polyploid cells. Cell 131, 437–440 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Michaelis, C., Ciosk, R. & Nasmyth, K. Cohesins: chromosomal proteins that prevent premature separation of sister chromatids. Cell 91, 35–45 (1997).

    Article  CAS  PubMed  Google Scholar 

  16. Guacci, V., Koshland, D. & Strunnikov, A. A direct link between sister chromatid cohesion and chromosome condensation revealed through the analysis of MCD1 in S. cerevisiae. Cell 91, 47–57 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kitagawa, R., Bakkenist, C.J., McKinnon, P.J. & Kastan, M.B. Phosphorylation of SMC1 is a critical downstream event in the ATM-NBS1-BRCA1 pathway. Genes Dev. 18, 1423–1438 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kim, S.T., Xu, B. & Kastan, M.B. Involvement of the cohesin protein, Smc1, in Atm-dependent and independent responses to DNA damage. Genes Dev. 16, 560–570 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yazdi, P.T. et al. SMC1 is a downstream effector in the ATM/NBS1 branch of the human S-phase checkpoint. Genes Dev. 16, 571–582 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Watrin, E. & Peters, J.M. The cohesin complex is required for the DNA damage-induced G2/M checkpoint in mammalian cells. EMBO J. 28, 2625–2635 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Watrin, E. et al. Human Scc4 is required for cohesin binding to chromatin, sister-chromatid cohesion, and mitotic progression. Curr. Biol. 16, 863–874 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Schmitz, J., Watrin, E., Lenart, P., Mechtler, K. & Peters, J.M. Sororin is required for stable binding of cohesin to chromatin and for sister chromatid cohesion in interphase. Curr. Biol. 17, 630–636 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Downing, K.H. Structural basis for the interaction of tubulin with proteins and drugs that affect microtubule dynamics. Annu. Rev. Cell Dev. Biol. 16, 89–111 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Shen, L. et al. Cell death by bortezomib-induced mitotic catastrophe in natural killer lymphoma cells. Mol. Cancer Ther. 7, 3807–3815 (2008).

    Article  CAS  PubMed  Google Scholar 

  25. Müller, C. et al. Inhibitors of kinesin Eg5: antiproliferative activity of monastrol analogues against human glioblastoma cells. Cancer Chemother. Pharmacol. 59, 157–164 (2007).

    Article  PubMed  Google Scholar 

  26. Karlseder, J., Smogorzewska, A. & de Lange, T. Senescence induced by altered telomere state, not telomere loss. Science 295, 2446–2449 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Sfeir, A. et al. Mammalian telomeres resemble fragile sites and require TRF1 for efficient replication. Cell 138, 90–103 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Giunta, S., Belotserkovskaya, R. & Jackson, S.P. DNA damage signaling in response to double-strand breaks during mitosis. J. Cell Biol. 190, 197–207 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Andreassen, P.R., Lohez, O.D., Lacroix, F.B. & Margolis, R.L. Tetraploid state induces p53-dependent arrest of nontransformed mammalian cells in G1. Mol. Biol. Cell 12, 1315–1328 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Celli, G.B. & de Lange, T. DNA processing is not required for ATM-mediated telomere damage response after TRF2 deletion. Nat. Cell Biol. 7, 712–718 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Musacchio, A. & Salmon, E.D. The spindle-assembly checkpoint in space and time. Nat. Rev. Mol. Cell Biol. 8, 379–393 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Santaguida, S., Vernieri, C., Villa, F., Ciliberto, A. & Musacchio, A. Evidence that Aurora B is implicated in spindle checkpoint signalling independently of error correction. EMBO J. 30, 1508–1519 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kim, H.J., Cho, J.H., Quan, H. & Kim, J.R. Down-regulation of Aurora B kinase induces cellular senescence in human fibroblasts and endothelial cells through a p53-dependent pathway. FEBS Lett. 585, 3569–3576 (2011).

    Article  CAS  PubMed  Google Scholar 

  34. Santaguida, S., Tighe, A., D'Alise, A.M., Taylor, S.S. & Musacchio, A. Dissecting the role of MPS1 in chromosome biorientation and the spindle checkpoint through the small molecule inhibitor reversine. J. Cell Biol. 190, 73–87 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Dalton, W.B., Nandan, M.O., Moore, R.T. & Yang, V.W. Human cancer cells commonly acquire DNA damage during mitotic arrest. Cancer Res. 67, 11487–11492 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Quignon, F. et al. Sustained mitotic block elicits DNA breaks: one-step alteration of ploidy and chromosome integrity in mammalian cells. Oncogene 26, 165–172 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Janssen, A. & Medema, R.H. Mitosis as an anti-cancer target. Oncogene 30, 2799–2809 (2011).

    Article  CAS  PubMed  Google Scholar 

  38. Lanni, J.S. & Jacks, T. Characterization of the p53-dependent postmitotic checkpoint following spindle disruption. Mol. Cell Biol. 18, 1055–1064 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Halbert, C.L., Demers, G.W. & Galloway, D.A. The E7 gene of human papillomavirus type 16 is sufficient for immortalization of human epithelial cells. J. Virol. 65, 473–478 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Crabbe, L., Verdun, R.E., Haggblom, C.I. & Karlseder, J. Defective telomere lagging strand synthesis in cells lacking WRN helicase activity. Science 306, 1951–1953 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Tiscornia, G., Singer, O. & Verma, I.M. Production and purification of lentiviral vectors. Nat. Protoc. 1, 241–245 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Sarbassov, D.D., Guertin, D.A., Ali, S.M. & Sabatini, D.M. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307, 1098–1101 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. O'Sullivan, R.J., Kubicek, S., Schreiber, S.L. & Karlseder, J. Reduced histone biosynthesis and chromatin changes arising from a damage signal at telomeres. Nat. Struct. Mol. Biol. 17, 1218–1225 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Verdun, R.E. & Karlseder, J. The DNA damage machinery and homologous recombination pathway act consecutively to protect human telomeres. Cell 127, 709–720 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J.M. Peters (Institute for Molecular Pathology), T. de Lange (The Rockefeller University) and P. Baumann (Stowers Institute for Medical Research) for antibodies; D. Gibbs (The Salk Institute) for production of lentivirus; and the Karlseder Laboratory for comments. M.T.H. is supported by a Human Frontier Science Program Long Term Fellowship and a Japan Society for the Promotion of Science Postdoctoral Fellowship for Research Abroad. A.J.C. is supported by a training grant from the US National Institutes of Health (NIH) (5T32CA009370-29). This work was supported by the Salk Institute Cancer Center Core Grant P30 CA014195-38 and grants from the NIH to J.K. (AG025837, GM087476).

Author information

Authors and Affiliations

Authors

Contributions

M.T.H. designed and carried out experiments and wrote the manuscript, A.J.C. designed and carried out experiments and wrote the manuscript, J.A.J.F. provided imaging expertise, E.L.-D. designed and carried out experiments, and J.K. designed experiments and wrote the manuscript.

Corresponding author

Correspondence to Jan Karlseder.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 (PDF 716 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hayashi, M., Cesare, A., Fitzpatrick, J. et al. A telomere-dependent DNA damage checkpoint induced by prolonged mitotic arrest. Nat Struct Mol Biol 19, 387–394 (2012). https://doi.org/10.1038/nsmb.2245

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2245

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing