Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Anticheckpoint pathways at telomeres in yeast

Abstract

Telomeres hide (or 'cap') chromosome ends from DNA-damage surveillance mechanisms that arrest the cell cycle and promote repair, but the checkpoint status of telomeres is not well understood. Here we characterize the response in Saccharomyces cerevisiae to DNA double-strand breaks (DSBs) flanked by varying amounts of telomeric repeat sequences (TG1–3). We show that even short arrays of TG1–3 repeats do not induce G2/M arrest. Both Rif1 and Rif2 are required for capping at short, rapidly elongating ends, yet are largely dispensable for protection of longer telomeric arrays. Rif1 and Rif2 act through parallel pathways to block accumulation of both RPA and Rad24, activators of checkpoint kinase Mec1 (ATR). Finally, we show that Rif function is correlated with an 'anticheckpoint' effect, in which checkpoint recovery at an adjacent unprotected end is stimulated, and we provide insight into the molecular mechanism of this phenomenon.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Suppression of G2/M arrest at a DSB flanked by short (80 bp) telomeric repeats is RIF1 and RIF2 dependent.
Figure 2: Inactivation of RIF1 or RIF2 increases the recruitment of proteins involved in the DNA damage response.
Figure 3: Telomeric tracts elicit an anticheckpoint.
Figure 4: The presence of telomeric tracts on the distal part of a break influences the recruitment of proteins on the proximal part.

Similar content being viewed by others

References

  1. de Lange, T. How telomeres solve the end-protection problem. Science 326, 948–952 (2009).

    Article  CAS  Google Scholar 

  2. Gao, H., Cervantes, R.B., Mandell, E.K., Otero, J.H. & Lundblad, V. RPA-like proteins mediate yeast telomere function. Nat. Struct. Mol. Biol. 14, 208–214 (2007).

    Article  CAS  Google Scholar 

  3. Garvik, B., Carson, M. & Hartwell, L. Single-stranded DNA arising at telomeres in cdc13 mutants may constitute a specific signal for the RAD9 checkpoint. Mol. Cell. Biol. 15, 6128–6138 (1995).

    Article  CAS  Google Scholar 

  4. Vodenicharov, M.D. & Wellinger, R.J. DNA degradation at unprotected telomeres in yeast is regulated by the CDK1 (Cdc28/Clb) cell-cycle kinase. Mol. Cell 24, 127–137 (2006).

    Article  CAS  Google Scholar 

  5. Frank, C.J., Hyde, M. & Greider, C.W. Regulation of telomere elongation by the cyclin-dependent kinase CDK1. Mol. Cell 24, 423–432 (2006).

    Article  CAS  Google Scholar 

  6. Vodenicharov, M.D., Laterreur, N. & Wellinger, R.J. Telomere capping in non-dividing yeast cells requires Yku and Rap1. EMBO J. 29, 3007–3019 (2010).

    Article  CAS  Google Scholar 

  7. Anbalagan, S., Bonetti, D., Lucchini, G. & Longhese, M.P. Rif1 supports the function of the CST complex in yeast telomere capping. PLoS Genet. 7, e1002024 (2011).

    Article  CAS  Google Scholar 

  8. Bonetti, D. et al. Shelterin-like proteins and Yku inhibit nucleolytic processing of Saccharomyces cerevisiae telomeres. PLoS Genet. 6, e1000966 (2010).

    Article  Google Scholar 

  9. Hirano, Y., Fukunaga, K. & Sugimoto, K. Rif1 and rif2 inhibit localization of tel1 to DNA ends. Mol. Cell 33, 312–322 (2009).

    Article  CAS  Google Scholar 

  10. Marcand, S., Pardo, B., Gratias, A., Cahun, S. & Callebaut, I. Multiple pathways inhibit NHEJ at telomeres. Genes Dev. 22, 1153–1158 (2008).

    Article  CAS  Google Scholar 

  11. Negrini, S., Ribaud, V., Bianchi, A. & Shore, D. DNA breaks are masked by multiple Rap1 binding in yeast: implications for telomere capping and telomerase regulation. Genes Dev. 21, 292–302 (2007).

    Article  CAS  Google Scholar 

  12. Pardo, B. & Marcand, S. Rap1 prevents telomere fusions by nonhomologous end joining. EMBO J. 24, 3117–3127 (2005).

    Article  CAS  Google Scholar 

  13. Hardy, C.F.J., Sussel, L. & Shore, D.A. RAP1-interacting protein involved in silencing and telomere length regulation. Genes Dev. 6, 801–814 (1992).

    Article  CAS  Google Scholar 

  14. Wotton, D. & Shore, D. A novel Rap1p-interacting factor, Rif2p, cooperates with Rif1p to regulate telomere length in Saccharomyces cerevisiae. Genes Dev. 11, 748–760 (1997).

    Article  CAS  Google Scholar 

  15. Diede, S.J. & Gottschling, D.E. Telomerase-mediated telomere addition in vivo requires DNA primase and DNA polymerases alpha and delta. Cell 99, 723–733 (1999).

    Article  CAS  Google Scholar 

  16. Hirano, Y. & Sugimoto, K. Cdc13 telomere capping decreases Mec1 association but does not affect Tel1 association with DNA ends. Mol. Biol. Cell 18, 2026–2036 (2007).

    Article  CAS  Google Scholar 

  17. Abdallah, P. et al. A two-step model for senescence triggered by a single critically short telomere. Nat. Cell Biol. 11, 988–993 (2009).

    Article  CAS  Google Scholar 

  18. Nugent, C.I., Hughes, T.R., Lue, N.F. & Lundblad, V. Cdc13p: a single-strand telomeric DNA-binding protein with a dual role in yeast telomere maintenance. Science 274, 249–252 (1996).

    Article  CAS  Google Scholar 

  19. Viscardi, V., Baroni, E., Romano, M., Lucchini, G. & Longhese, M.P. Sudden telomere lengthening triggers a Rad53-dependent checkpoint in Saccharomyces cerevisiae. Mol. Biol. Cell 14, 3126–3143 (2003).

    Article  CAS  Google Scholar 

  20. Teixeira, M.T., Arneric, M., Sperisen, P. & Lingner, J. Telomere length homeostasis is achieved via a switch between telomerase-extendible and -nonextendible states. Cell 117, 323–335 (2004).

    Article  CAS  Google Scholar 

  21. Michelson, R.J., Rosenstein, S. & Weinert, T. A telomeric repeat sequence adjacent to a DNA double-stranded break produces an anticheckpoint. Genes Dev. 19, 2546–2559 (2005).

    Article  CAS  Google Scholar 

  22. Booth, C., Griffith, E., Brady, G. & Lydall, D. Quantitative amplification of single-stranded DNA (QAOS) demonstrates that cdc13–1 mutants generate ssDNA in a telomere to centromere direction. Nucleic Acids Res. 29, 4414–4422 (2001).

    Article  CAS  Google Scholar 

  23. Lisby, M., Barlow, J.H., Burgess, R.C. & Rothstein, R. Choreography of the DNA damage response: spatiotemporal relationships among checkpoint and repair proteins. Cell 118, 699–713 (2004).

    Article  CAS  Google Scholar 

  24. Lengsfeld, B.M., Rattray, A.J., Bhaskara, V., Ghirlando, R. & Paull, T.T. Sae2 is an endonuclease that processes hairpin DNA cooperatively with the Mre11/Rad50/Xrs2 complex. Mol. Cell 28, 638–651 (2007).

    Article  CAS  Google Scholar 

  25. Harrison, J.C. & Haber, J.E. Surviving the breakup: the DNA damage checkpoint. Annu. Rev. Genet. 40, 209–235 (2006).

    Article  CAS  Google Scholar 

  26. Majka, J., Niedziela-Majka, A. & Burgers, P.M. The checkpoint clamp activates Mec1 kinase during initiation of the DNA damage checkpoint. Mol. Cell 24, 891–901 (2006).

    Article  CAS  Google Scholar 

  27. Kondo, T., Wakayama, T., Naiki, T., Matsumoto, K. & Sugimoto, K. Recruitment of Mec1 and Ddc1 checkpoint proteins to double-strand breaks through distinct mechanisms. Science 294, 867–870 (2001).

    Article  CAS  Google Scholar 

  28. Sun, Z., Hsiao, J., Fay, D.S. & Stern, D.F. Rad53 FHA domain associated with phosphorylated rad9 in the DNA damage checkpoint. Science 281, 272–274 (1998).

    Article  CAS  Google Scholar 

  29. Sweeney, F.D. et al. Saccharomyces cerevisiae Rad9 acts as a Mec1 adaptor to allow Rad53 activation. Curr. Biol. 15, 1364–1375 (2005).

    Article  CAS  Google Scholar 

  30. Lobachev, K., Vitriol, E., Stemple, J., Resnick, M.A. & Bloom, K. Chromosome fragmentation after induction of a double-strand break is an active process prevented by the RMX repair complex. Curr. Biol. 14, 2107–2112 (2004).

    Article  CAS  Google Scholar 

  31. Clerici, M., Mantiero, D., Lucchini, G. & Longhese, M.P. The Saccharomyces cerevisiae Sae2 protein promotes resection and bridging of double strand break ends. J. Biol. Chem. 280, 38631–38638 (2005).

    Article  CAS  Google Scholar 

  32. Kaye, J.A. et al. DNA breaks promote genomic instability by impeding proper chromosome segregation. Curr. Biol. 14, 2096–2106 (2004).

    Article  CAS  Google Scholar 

  33. Nakai, W., Westmoreland, J., Yeh, E., Bloom, K. & Resnick, M.A. Chromosome integrity at a double-strand break requires exonuclease 1 and MRX. DNA Repair (Amst.) 10, 102–110 (2011).

    Article  CAS  Google Scholar 

  34. Carneiro, T. et al. Telomeres avoid end detection by severing the checkpoint signal transduction pathway. Nature 467, 228–232 (2010).

    Article  CAS  Google Scholar 

  35. Wysocki, R. et al. Role of Dot1-dependent histone H3 methylation in G1 and S phase DNA damage checkpoint functions of Rad9. Mol. Cell. Biol. 25, 8430–8443 (2005).

    Article  CAS  Google Scholar 

  36. Song, B. & Sung, P. Functional interactions among yeast Rad51 recombinase, Rad52 mediator, and replication protein A in DNA strand exchange. J. Biol. Chem. 275, 15895–15904 (2000).

    Article  CAS  Google Scholar 

  37. Majka, J., Binz, S.K., Wold, M.S. & Burgers, P.M. Replication protein A directs loading of the DNA damage checkpoint clamp to 5′-DNA junctions. J. Biol. Chem. 281, 27855–27861 (2006).

    Article  CAS  Google Scholar 

  38. Clemenson, C. & Marsolier-Kergoat, M.C. DNA damage checkpoint inactivation: adaptation and recovery. DNA Repair (Amst.) 8, 1101–1109 (2009).

    Article  CAS  Google Scholar 

  39. Toczyski, D.P., Galgoczy, D.J. & Hartwell, L.H. CDC5 and CKII control adaptation to the yeast DNA damage checkpoint. Cell 90, 1097–1106 (1997).

    Article  CAS  Google Scholar 

  40. Gilson, E., Muller, T., Sogo, J., Laroche, T. & Gasser, S.M. RAP1 stimulates single- to double-strand association of yeast telomeric DNA: implications for telomere-telomere interactions. Nucleic Acids Res. 22, 5310–5320 (1994).

    Article  CAS  Google Scholar 

  41. Giraldo, R. & Rhodes, D. The yeast telomere-binding protein RAP1 binds to and promotes the formation of DNA quadruplexes in telomeric DNA. EMBO J. 13, 2411–2420 (1994).

    Article  CAS  Google Scholar 

  42. Miller, K.M., Rog, O. & Cooper, J.P. Semi-conservative DNA replication through telomeres requires Taz1. Nature 440, 824–828 (2006).

    Article  CAS  Google Scholar 

  43. Ivessa, A.S., Zhou, J.Q., Schulz, V.P., Monson, E.K. & Zakian, V.A. Saccharomyces Rrm3p, a 5′ to 3′ DNA helicase that promotes replication fork progression through telomeric and subtelomeric DNA. Genes Dev. 16, 1383–1396 (2002).

    Article  CAS  Google Scholar 

  44. Khadaroo, B. et al. The DNA damage response at eroded telomeres and tethering to the nuclear pore complex. Nat. Cell Biol. 11, 980–987 (2009).

    Article  CAS  Google Scholar 

  45. Makovets, S., Herskowitz, I. & Blackburn, E.H. Anatomy and dynamics of DNA replication fork movement in yeast telomeric regions. Mol. Cell. Biol. 24, 4019–4031 (2004).

    Article  CAS  Google Scholar 

  46. Chang, M., Arneric, M. & Lingner, J. Telomerase repeat addition processivity is increased at critically short telomeres in a Tel1-dependent manner in Saccharomyces cerevisiae. Genes Dev. 21, 2485–2494 (2007).

    Article  CAS  Google Scholar 

  47. Laroche, T. et al. Mutation of yeast Ku genes disrupts the subnuclear organization of telomeres. Curr. Biol. 8, 653–656 (1998).

    Article  CAS  Google Scholar 

  48. Palladino, F. et al. SIR3 and SIR4 proteins are required for the positioning and integrity of yeast telomeres. Cell 75, 543–555 (1993).

    Article  CAS  Google Scholar 

  49. Schober, H. et al. Controlled exchange of chromosomal arms reveals principles driving telomere interactions in yeast. Genome Res. 18, 261–271 (2008).

    Article  CAS  Google Scholar 

  50. Bianchi, A., Negrini, S. & Shore, D. Delivery of yeast telomerase to a DNA break depends on the recruitment functions of Cdc13 and Est1. Mol. Cell 16, 139–146 (2004).

    Article  CAS  Google Scholar 

  51. Gueldener, U., Heinisch, J., Koehler, G.J., Voss, D. & Hegemann, J.H. A second set of loxP marker cassettes for Cre-mediated multiple gene knockouts in budding yeast. Nucleic Acids Res. 30, e23 (2002).

    Article  CAS  Google Scholar 

  52. Goldstein, A.L. & McCusker, J.H. Three new dominant drug resistance cassettes for gene disruption in Saccharomyces cerevisiae. Yeast 15, 1541–1553 (1999).

    Article  CAS  Google Scholar 

  53. Longtine, M.S. et al. Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast 14, 953–961 (1998).

    Article  CAS  Google Scholar 

  54. Fiorani, S., Mimun, G., Caleca, L., Piccini, D. & Pellicioli, A. Characterization of the activation domain of the Rad53 checkpoint kinase. Cell Cycle 7, 493–499 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. Follonier for initiating the project, P. Damay for help in plasmid construction, B. Knight for helpful discussions concerning statistical analysis, S. Brill (Rutgers, State University of New Jersey) for Rfa2-specific antibody, A. Pellicioli (University of Milan) for Rad53-specific antibody, N. Roggli for artwork, V. Ribaud (Shore laboratory) for strains (listed in Supplementary Table 1), members of the Shore laboratory for discussions and suggestions, and A. Bianchi for discussions and critical reading of the manuscript. These studies were supported by a grant from the Swiss National Fund to D.S. (31003A-116716), by the National Center for Competence in Research 'Frontiers in Genetics' program of the Swiss National Fund, and by the Canton and Republic of Geneva. C.R. was supported by a postdoctoral fellowship from the Fondation pour la Recherche Médicale (France).

Author information

Authors and Affiliations

Authors

Contributions

C.R. and D.S. designed the experiments and analyzed the data. C.R. performed the experiments. C.R. and D.S. wrote the manuscript.

Corresponding author

Correspondence to David Shore.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9, Supplementary Table 1 and Supplementary Methods (PDF 909 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ribeyre, C., Shore, D. Anticheckpoint pathways at telomeres in yeast. Nat Struct Mol Biol 19, 307–313 (2012). https://doi.org/10.1038/nsmb.2225

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2225

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing