Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Crystal structure of quinol-dependent nitric oxide reductase from Geobacillus stearothermophilus

Abstract

The structure of quinol-dependent nitric oxide reductase (qNOR) from G. stearothermophilus, which catalyzes the reduction of NO to produce the major ozone-depleting gas N2O, has been characterized at 2.5 Å resolution. The overall fold of qNOR is similar to that of cytochrome c–dependent NOR (cNOR), and some structural features that are characteristic of cNOR, such as the calcium binding site and hydrophilic cytochrome c domain, are observed in qNOR, even though it harbors no heme c. In contrast to cNOR, structure-based mutagenesis and molecular dynamics simulation studies of qNOR suggest that a water channel from the cytoplasm can serve as a proton transfer pathway for the catalytic reaction. Further structural comparison of qNOR with cNOR and aerobic and microaerobic respiratory oxidases elucidates their evolutionary relationship and possible functional conversions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overall structure of G. stearothermophilus qNOR.
Figure 2: Comparison of the hydrophilic domain of qNOR with cyt-c domains.
Figure 3: Metal centers in NORs.
Figure 4: Functional channels in qNOR.
Figure 5: Menaquinol binding site in qNOR.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

DDBJ/GenBank/EMBL

References

  1. Zumft, W.G. Cell biology and molecular basis of denitrification. Microbiol. Mol. Biol. Rev. 61, 533–616 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Zumft, W.G. Nitric oxide reductases of prokaryotes with emphasis on the respiratory, heme-copper oxidase type. J. Inorg. Biochem. 99, 194–215 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Watmough, N.J., Field, S.J., Hughes, R.J. & Richardson, D.J. The bacterial respiratory nitric oxide reductase. Biochem. Soc. Trans. 37, 392–399 (2009).

    Article  CAS  PubMed  Google Scholar 

  4. Hendriks, J. et al. Nitric oxide reductases in bacteria. Biochim. Biophys. Acta 1459, 266–273 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Stevanin, T.M., Moir, J.W. & Read, R.C. Nitric oxide detoxification systems enhance survival of Neisseria meningitidis in human macrophages and in nasopharyngeal mucosa. Infect. Immun. 73, 3322–3329 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Philippot, L. Denitrification in pathogenic bacteria: for better or worst? Trends Microbiol. 13, 191–192 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Ravishankara, A.R., Daniel, J.S. & Portmann, R.W. Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century. Science 326, 123–125 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. Canfield, D.E., Glazer, A.N. & Falkowski, P.G. The evolution and future of Earth's nitrogen cycle. Science 330, 192–196 (2010).

    Article  CAS  PubMed  Google Scholar 

  9. Prather, M.J. & Hsu, J. Coupling of nitrous oxide and methane by global atmospheric chemistry. Science 330, 952–954 (2010).

    Article  CAS  PubMed  Google Scholar 

  10. Wuebbles, D.J. Atmosphere. Nitrous oxide: no laughing matter. Science 326, 56–57 (2009).

    Article  CAS  PubMed  Google Scholar 

  11. Kumita, H. et al. NO reduction by nitric-oxide reductase from denitrifying bacterium Pseudomonas aeruginosa: characterization of reaction intermediates that appear in the single turnover cycle. J. Biol. Chem. 279, 55247–55254 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Moënne-Loccoz, P. Spectroscopic characterization of heme iron-nitrosyl species and their role in NO reductase mechanisms in diiron proteins. Nat. Prod. Rep. 24, 610–620 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Yeung, N. et al. Rational design of a structural and functional nitric oxide reductase. Nature 462, 1079–1082 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Blomberg, L.M., Blomberg, M.R. & Siegbahn, P.E. Reduction of nitric oxide in bacterial nitric oxide reductase–a theoretical model study. Biochim. Biophys. Acta 1757, 240–252 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Saraste, M. & Castresana, J. Cytochrome oxidase evolved by tinkering with denitrification enzymes. FEBS Lett. 341, 1–4 (1994).

    Article  CAS  PubMed  Google Scholar 

  16. Fujiwara, T. & Fukumori, Y. Cytochrome cb-type nitric oxide reductase with cytochrome c oxidase activity from Paracoccus denitrificans ATCC 35512. J. Bacteriol. 178, 1866–1871 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Giuffrè, A. et al. The heme-copper oxidases of Thermus thermophilus catalyze the reduction of nitric oxide: evolutionary implications. Proc. Natl. Acad. Sci. USA 96, 14718–14723 (1999).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Huang, Y., Reimann, J., Lepp, H., Drici, N. & Adelroth, P. Vectorial proton transfer coupled to reduction of O2 and NO by a heme-copper oxidase. Proc. Natl. Acad. Sci. USA 105, 20257–20262 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hayashi, T. et al. Accommodation of two diatomic molecules in cytochrome bo: insights into NO reductase activity in terminal oxidases. Biochemistry 48, 883–890 (2009).

    Article  CAS  PubMed  Google Scholar 

  20. Hendriks, J.H., Jasaitis, A., Saraste, M. & Verkhovsky, M.I. Proton and electron pathways in the bacterial nitric oxide reductase. Biochemistry 41, 2331–2340 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Reimann, J., Flock, U., Lepp, H., Honigmann, A. & Adelroth, P. A pathway for protons in nitric oxide reductase from Paracoccus denitrificans. Biochim. Biophys. Acta 1767, 362–373 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Hino, T. et al. Structural basis of biological N2O generation by bacterial nitric oxide reductase. Science 330, 1666–1670 (2010).

    Article  CAS  PubMed  Google Scholar 

  23. Iwata, S., Ostermeier, C., Ludwig, B. & Michel, H. Structure at 2.8 Å resolution of cytochrome c oxidase from Paracoccus denitrificans. Nature 376, 660–669 (1995).

    Article  CAS  PubMed  Google Scholar 

  24. Tsukihara, T. et al. The whole structure of the 13-subunit oxidized cytochrome c oxidase at 2.8 Å. Science 272, 1136–1144 (1996).

    Article  CAS  PubMed  Google Scholar 

  25. Soulimane, T. et al. Structure and mechanism of the aberrant ba3-cytochrome c oxidase from Thermus thermophilus. EMBO J. 19, 1766–1776 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Buschmann, S. et al. The structure of cbb3 cytochrome oxidase provides insights into proton pumping. Science 329, 327–330 (2010).

    Article  CAS  PubMed  Google Scholar 

  27. Flock, U., Reimann, J. & Adelroth, P. Proton transfer in bacterial nitric oxide reductase. Biochem. Soc. Trans. 34, 188–190 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Flock, U. et al. Defining the proton entry point in the bacterial respiratory nitric-oxide reductase. J. Biol. Chem. 283, 3839–3845 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Cramm, R., Pohlmann, A. & Friedrich, B. Purification and characterization of the single-component nitric oxide reductase from Ralstonia eutropha H16. FEBS Lett. 460, 6–10 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. de Vries, S., Strampraad, M.J., Lu, S., Moenne-Loccoz, P. & Schroder, I. Purification and characterization of the MQH2:NO oxidoreductase from the hyperthermophilic archaeon Pyrobaculum aerophilum. J. Biol. Chem. 278, 35861–35868 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. Castresana, J., Lubben, M., Saraste, M. & Higgins, D.G. Evolution of cytochrome oxidase, an enzyme older than atmospheric oxygen. EMBO J. 13, 2516–2525 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. van der Oost, J. et al. Restoration of a lost metal-binding site: construction of two different copper sites into a subunit of the E. coli cytochrome o quinol oxidase complex. EMBO J. 11, 3209–3217 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pereira, M.M., Santana, M. & Teixeira, M. A novel scenario for the evolution of haem-copper oxygen reductases. Biochim. Biophys. Acta 1505, 185–208 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Damaschun, G., Damaschun, H., Gast, K., Gernat, C. & Zirwer, D. Acid denatured apo-cytochrome c is a random coil: evidence from small-angle X-ray scattering and dynamic light scattering. Biochim. Biophys. Acta 1078, 289–295 (1991).

    Article  CAS  PubMed  Google Scholar 

  35. Butland, G., Spiro, S., Watmough, N.J. & Richardson, D.J. Two conserved glutamates in the bacterial nitric oxide reductase are essential for activity but not assembly of the enzyme. J. Bacteriol. 183, 189–199 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Thorndycroft, F.H., Butland, G., Richardson, D.J. & Watmough, N.J. A new assay for nitric oxide reductase reveals two conserved glutamate residues form the entrance to a proton-conducting channel in the bacterial enzyme. Biochem. J. 401, 111–119 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Lin, Y.W. et al. Roles of glutamates and metal ions in a rationally designed nitric oxide reductase based on myoglobin. Proc. Natl. Acad. Sci. USA 107, 8581–8586 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Olkhova, E., Hutter, M.C., Lill, M.A., Helms, V. & Michel, H. Dynamic water networks in cytochrome c oxidase from Paracoccus denitrificans investigated by molecular dynamics simulations. Biophys. J. 86, 1873–1889 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rodrigues, M.L., Scott, K.A., Sansom, M.S., Pereira, I.A. & Archer, M. Quinol oxidation by c-type cytochromes: structural characterization of the menaquinol binding site of NrfHA. J. Mol. Biol. 381, 341–350 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. Abramson, J. et al. The structure of the ubiquinol oxidase from Escherichia coli and its ubiquinone binding site. Nat. Struct. Biol. 7, 910–917 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Jasaitis, A. et al. Electrogenic reactions of cytochrome bd. Biochemistry 39, 13800–13809 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Haltia, T. et al. Crystal structure of nitrous oxide reductase from Paracoccus denitrificans at 1.6 Å resolution. Biochem. J. 369, 77–88 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Paraskevopoulos, K., Antonyuk, S.V., Sawers, R.G., Eady, R.R. & Hasnain, S.S. Insight into catalysis of nitrous oxide reductase from high-resolution structures of resting and inhibitor-bound enzyme from Achromobacter cycloclastes. J. Mol. Biol. 362, 55–65 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Ducluzeau, A.L. et al. Was nitric oxide the first deep electron sink? Trends Biochem. Sci. 34, 9–15 (2009).

    Article  CAS  PubMed  Google Scholar 

  45. Kawabata, T. MATRAS: A program for protein 3D structure comparison. Nucleic Acids Res. 31, 3367–3369 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hemp, J. et al. Comparative genomics and site-directed mutagenesis support the existence of only one input channel for protons in the C-family (cbb3 oxidase) of heme-copper oxygen reductases. Biochemistry 46, 9963–9972 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Ettwig, K.F. et al. Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature 464, 543–548 (2010).

    Article  CAS  PubMed  Google Scholar 

  48. Petrek, M. et al. CAVER: a new tool to explore routes from protein clefts, pockets and cavities. BMC Bioinformatics 7, 316 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Matsuura, Y., Takano, T. & Dickerson, R.E. Structure of cytochrome c551 from Pseudomonas aeruginosa refined at 1.6 Å resolution and comparison of the two redox forms. J. Mol. Biol. 156, 389–409 (1982).

    Article  CAS  PubMed  Google Scholar 

  50. Stelter, M. et al. A novel type of monoheme cytochrome c: biochemical and structural characterization at 1.23 Å resolution of Rhodothermus marinus cytochrome c. Biochemistry 47, 11953–11963 (2008).

    Article  CAS  PubMed  Google Scholar 

  51. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  PubMed  Google Scholar 

  52. Bricogne, G., Vonrhein, C., Flensburg, C., Schiltz, M. & Paciorek, W. Generation, representation and flow of phase information in structure determination: recent developments in and around SHARP 2.0. Acta Crystallogr. D Biol. Crystallogr. 59, 2023–2030 (2003).

    Article  CAS  PubMed  Google Scholar 

  53. Abrahams, J.P. & Leslie, A.G. Methods used in the structure determination of bovine mitochondrial F1 ATPase. Acta Crystallogr. D Biol. Crystallogr. 52, 30–42 (1996).

    Article  CAS  PubMed  Google Scholar 

  54. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  PubMed  Google Scholar 

  55. Brunger, A.T. Version 1.2 of the crystallography and NMR system. Nat. Protoc. 2, 2728–2733 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. Larkin, M.A. et al. Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947–2948 (2007).

    Article  CAS  PubMed  Google Scholar 

  57. MacKerell, A.D. Jr. et al. All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B 102, 3586–3616 (1998).

    Article  CAS  PubMed  Google Scholar 

  58. Phillips, J.C. et al. Scalable molecular dynamics with NAMD. J. Comput. Chem. 26, 1781–1802 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Andersen, H.C. Rattle: A “velocity” version of the shake algorithm for molecular dynamics calculations. J. Comput. Phys. 52, 24–34 (1983).

    Article  CAS  Google Scholar 

  60. Humphrey, W., Dalke, A. & Schulten, K. VMD—Visual Molecular Dynamics. J. Mol. Graphics 14, 33–38 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Y. Shimomura for support in the preparation of qNOR and the staff of the SPring-8 beamlines for their help with diffraction measurements. This work was supported by grants from the Ministry of Education, Culture, Sports, Science and Technology (21245041; T.T., H.S., S.N., A.V.P., Y. Sugita and Y. Shiro).

Author information

Authors and Affiliations

Authors

Contributions

Y.M. was responsible for cloning the qNOR gene and constructing the expression system as well as for purifying, characterizing and crystallizing the protein. T.T. carried out the enzyme assays and the ICP-AES metal analysis. T.H. purified P. aeruginosa cNOR. Y.M. and H.S. collected, processed and refined the X-ray data. A.V.P. carried out the molecular dynamics simulation. T.H., T.T., Y.M., S.N., Y. Sugita and Y. Shiro designed the study. Y.M., T.T., A.V.P., S.N. and Y. Shiro prepared the manuscript. All authors analyzed the data and discussed the results.

Corresponding authors

Correspondence to Shingo Nagano or Yoshitsugu Shiro.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 and Supplementary Methods (PDF 4397 kb)

Supplementary Movie 1

Dynamics in the water channel in MD simulation. Time-dependent dynamics, such as side chains fluctuations, moving water molecules, and transient hydrogen-bond networks can be seen. Water molecules in the water channel are shown in yellow, and bulk water around the channel entrance is shown as red and white lines. Hydrogen-bonds are shown as dashed green lines. (GIF 4495 kb)

Supplementary Movie 2

Motion of selected water molecules along the water channel in the MD simulation. Eight individual waters are shown as large spheres and are highlighted in different colors. Other water molecules inside the water channel and in the bulk around the channel entrance are shown as yellow sticks. The selected water molecules come into the water channel via the entry site, exchange with waters inside the channel, travel up to the binuclear active center, and eventually return to the bulk. The water molecules are highly mobile and move easily along the channel on a short timescale. There are several stable positions (“traps”) where water molecules stay near residues for a long time (typically, nanoseconds), before moving further along the channel. (GIF 4028 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matsumoto, Y., Tosha, T., Pisliakov, A. et al. Crystal structure of quinol-dependent nitric oxide reductase from Geobacillus stearothermophilus. Nat Struct Mol Biol 19, 238–245 (2012). https://doi.org/10.1038/nsmb.2213

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2213

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing