Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mre11 regulates CtIP-dependent double-strand break repair by interaction with CDK2

Abstract

Homologous recombination facilitates accurate repair of DNA double-strand breaks (DSBs) during the S and G2 phases of the cell cycle by using intact sister chromatids as sequence templates. Homologous recombination capacity is maximized in S and G2 by cyclin-dependent kinase (CDK) phosphorylation of CtIP, which subsequently interacts with BRCA1 and the Mre11–Rad50–NBS1 (MRN) complex. Here we show that, in human and mouse, Mre11 controls these events through a direct interaction with CDK2 that is required for CtIP phosphorylation and BRCA1 interaction in normally dividing cells. CDK2 binds the C terminus of Mre11, which is absent in an inherited allele causing ataxia telangiectasia–like disorder. This newly uncovered role for Mre11 does not require ATM activation or nuclease activities. Therefore, functions of MRN are not restricted to DNA damage responses but include regulating homologous recombination capacity during the normal mammalian cell cycle.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The MRN complex controls CtIP protein levels in mammals.
Figure 2: Mre11 controls CtIP phosphorylation in normally dividing cells.
Figure 3: Mre11 interacts with CDK2.
Figure 4: Direct interaction between Mre11 and CDK2.
Figure 5: CtIP DSB repair functions are dependent on the Mre11 C terminus.
Figure 6: Model depicting control of homologous recombination capacity by Mre11.

Similar content being viewed by others

References

  1. Jackson, S.P. & Bartek, J. The DNA-damage response in human biology and disease. Nature 461, 1071–1078 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Matsuoka, S. et al. ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science 316, 1160–1166 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. McKinnon, P.J. & Caldecott, K.W. DNA strand break repair and human genetic disease. Annu. Rev. Genomics Hum. Genet. 8, 37–55 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. San Filippo, J., Sung, P. & Klein, H. Mechanism of eukaryotic homologous recombination. Annu. Rev. Biochem. 77, 229–257 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Mimitou, E.P. & Symington, L.S. DNA end resection-Unraveling the tail. DNA Repair (Amst.) 10, 344–348 (2011).

    Article  CAS  Google Scholar 

  6. Buis, J. et al. Mre11 nuclease activity has essential roles in DNA repair and genomic stability distinct from ATM activation. Cell 135, 85–96 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yamaguchi-Iwai, Y. et al. Mre11 is essential for the maintenance of chromosomal DNA in vertebrate cells. EMBO J. 18, 6619–6629 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Takeda, S., Nakamura, K., Taniguchi, Y. & Paull, T.T. Ctp1/CtIP and the MRN complex collaborate in the initial steps of homologous recombination. Mol. Cell 28, 351–352 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Sartori, A.A. et al. Human CtIP promotes DNA end resection. Nature 450, 509–514 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Williams, G.J., Lees-Miller, S.P. & Tainer, J.A. Mre11-Rad50-Nbs1 conformations and the control of sensing, signaling, and effector responses at DNA double-strand breaks. DNA Repair (Amst.) 9, 1299–1306 (2010).

    Article  CAS  Google Scholar 

  11. Hopfner, K.P. et al. Structural biochemistry and interaction architecture of the DNA double-strand break repair Mre11 nuclease and Rad50-ATPase. Cell 105, 473–485 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Williams, R.S. et al. Mre11 dimers coordinate DNA end bridging and nuclease processing in double-strand-break repair. Cell 135, 97–109 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. de Jager, M. et al. Human Rad50/Mre11 is a flexible complex that can tether DNA ends. Mol. Cell 8, 1129–1135 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Nimonkar, A.V. et al. BLM-DNA2-RPA-MRN and EXO1-BLM-RPA-MRN constitute two DNA end resection machineries for human DNA break repair. Genes Dev. 25, 350–362 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lee, J.H. & Paull, T.T. Direct activation of the ATM protein kinase by the Mre11/Rad50/Nbs1 complex. Science 304, 93–96 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Lee, J.H. & Paull, T.T. ATM activation by DNA double-strand breaks through the Mre11-Rad50-Nbs1 complex. Science 308, 551–554 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Lloyd, J. et al. A supramodular FHA/BRCT-repeat architecture mediates Nbs1 adaptor function in response to DNA damage. Cell 139, 100–111 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Williams, R.S. et al. Nbs1 flexibly tethers Ctp1 and Mre11-Rad50 to coordinate DNA double-strand break processing and repair. Cell 139, 87–99 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yun, M.H. & Hiom, K. CtIP-BRCA1 modulates the choice of DNA double-strand-break repair pathway throughout the cell cycle. Nature 459, 460–463 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chen, L., Nievera, C.J., Lee, A.Y. & Wu, X. Cell cycle-dependent complex formation of BRCA1.CtIP.MRN is important for DNA double-strand break repair. J. Biol. Chem. 283, 7713–7720 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. You, Z. et al. CtIP links DNA double-strand break sensing to resection. Mol. Cell 36, 954–969 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Huertas, P. & Jackson, S.P. Human CtIP mediates cell cycle control of DNA end resection and double strand break repair. J. Biol. Chem. 284, 9558–9565 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Germani, A. et al. SIAH-1 interacts with CtIP and promotes its degradation by the proteasome pathway. Oncogene 22, 8845–8851 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Yu, X. & Chen, J. DNA damage-induced cell cycle checkpoint control requires CtIP, a phosphorylation-dependent binding partner of BRCA1 C-terminal domains. Mol. Cell. Biol. 24, 9478–9486 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cerqueira, A. et al. Overall Cdk activity modulates the DNA damage response in mammalian cells. J. Cell Biol. 187, 773–780 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Satyanarayana, A. & Kaldis, P. Mammalian cell-cycle regulation: several Cdks, numerous cyclins and diverse compensatory mechanisms. Oncogene 28, 2925–2939 (2009).

    Article  CAS  PubMed  Google Scholar 

  27. Huertas, P., Cortes-Ledesma, F., Sartori, A.A., Aguilera, A. & Jackson, S.P. CDK targets Sae2 to control DNA-end resection and homologous recombination. Nature 455, 689–692 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Müller-Tidow, C. et al. The cyclin A1–CDK2 complex regulates DNA double-strand break repair. Mol. Cell. Biol. 24, 8917–8928 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Deans, A.J. et al. Cyclin-dependent kinase 2 functions in normal DNA repair and is a therapeutic target in BRCA1-deficient cancers. Cancer Res. 66, 8219–8226 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Stewart, G.S. et al. The DNA double-strand break repair gene hMRE11 is mutated in individuals with an ataxia-telangiectasia-like disorder. Cell 99, 577–587 (1999).

    Article  CAS  PubMed  Google Scholar 

  31. Theunissen, J.W. et al. Checkpoint failure and chromosomal instability without lymphomagenesis in Mre11(ATLD1/ATLD1) mice. Mol. Cell 12, 1511–1523 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Frappart, P.O. & McKinnon, P.J. Ataxia-telangiectasia and related diseases. Neuromolecular Med. 8, 495–511 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Difilippantonio, S. et al. Role of Nbs1 in the activation of the Atm kinase revealed in humanized mouse models. Nat. Cell Biol. 7, 675–685 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Adelman, C.A., De, S. & Petrini, J.H. Rad50 is dispensable for the maintenance and viability of postmitotic tissues. Mol. Cell. Biol. 29, 483–492 (2009).

    Article  CAS  PubMed  Google Scholar 

  35. Bakkenist, C.J. & Kastan, M.B. DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature 421, 499–506 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Williams, B.R. et al. A murine model of Nijmegen breakage syndrome. Curr. Biol. 12, 648–653 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Berthet, C., Aleem, E., Coppola, V., Tessarollo, L. & Kaldis, P. Cdk2 knockout mice are viable. Curr. Biol. 13, 1775–1785 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Santamaría, D. et al. Cdk1 is sufficient to drive the mammalian cell cycle. Nature 448, 811–815 (2007).

    Article  PubMed  Google Scholar 

  39. Meijer, L. & Raymond, E. Roscovitine and other purines as kinase inhibitors. From starfish oocytes to clinical trials. Acc. Chem. Res. 36, 417–425 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Chien, C.T., Bartel, P.L., Sternglanz, R. & Fields, S. The two-hybrid system: a method to identify and clone genes for proteins that interact with a protein of interest. Proc. Natl. Acad. Sci. USA 88, 9578–9582 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Pierce, A.J., Johnson, R.D., Thompson, L.H. & Jasin, M. XRCC3 promotes homology-directed repair of DNA damage in mammalian cells. Genes Dev. 13, 2633–2638 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mirzoeva, O.K. & Petrini, J.H. DNA damage-dependent nuclear dynamics of the Mre11 complex. Mol. Cell. Biol. 21, 281–288 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lisby, M., Barlow, J.H., Burgess, R.C. & Rothstein, R. Choreography of the DNA damage response: spatiotemporal relationships among checkpoint and repair proteins. Cell 118, 699–713 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. Rupnik, A., Lowndes, N.F. & Grenon, M. MRN and the race to the break. Chromosoma 119, 115–135 (2010).

    Article  PubMed  Google Scholar 

  45. Morales, M. et al. The Rad50S allele promotes ATM-dependent DNA damage responses and suppresses ATM deficiency: implications for the Mre11 complex as a DNA damage sensor. Genes Dev. 19, 3043–3054 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hopfner, K.P. et al. Mre11 and Rad50 from Pyrococcus furiosus: cloning and biochemical characterization reveal an evolutionarily conserved multiprotein machine. J. Bacteriol. 182, 6036–6041 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Cromie, G.A. & Leach, D.R. Recombinational repair of chromosomal DNA double-strand breaks generated by a restriction endonuclease. Mol. Microbiol. 41, 873–883 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Dinkelmann, M. et al. Multiple functions of MRN in end-joining pathways during isotype class switching. Nat. Struct. Mol. Biol. 16, 808–813 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zha, S., Sekiguchi, J., Brush, J.W., Bassing, C.H. & Alt, F.W. Complementary functions of ATM and H2AX in development and suppression of genomic instability. Proc. Natl. Acad. Sci. USA 105, 9302–9306 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Helmink, B.A. et al. MRN complex function in the repair of chromosomal Rag-mediated DNA double-strand breaks. J. Exp. Med. 206, 669–679 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank M. Weitzman (Salk Institute), P. Kaldis (A*STAR, Institute of Molecular and Cell Biology) and B. Sleckman (Washington University) for providing cell lines; J. Sekiguchi (University of Michigan) for providing ATM−/− mice; and M. Jasin (Memorial Sloan-Kettering Cancer Center) for providing DR-GFP plasmid. We thank T. Wilson, X. Yu, J. Sekiguchi, G. Dressler and C. Canman for helpful discussions regarding the manuscript. Support for this work was provided by US National Institutes of Health (NIH) grant R01-HL079118 (to D.O.F.), the Leukemia and Lymphoma Society (to D.O.F.), the University of Michigan Cancer Center Support Grant 5-P30-CA46592 (D.O.F.), NIH F32-GM087073 (J.B.) and NIH T32-AI007413 (E.S.).

Author information

Authors and Affiliations

Authors

Contributions

J.B. planned and conducted all experiments except the two-hybrid and B-lymphocyte analyses, analyzed and interpreted data from all experiments and participated in writing the manuscript. T.S. conducted and interpreted the two-hybrid analyses. E.S. carried out the B lymphocyte western blot analysis from spleens of mice from complex breeds. D.O.F. participated in design of all experiments, analyses and interpretation of data and in writing of the manuscript.

Corresponding author

Correspondence to David O Ferguson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 (PDF 4353 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buis, J., Stoneham, T., Spehalski, E. et al. Mre11 regulates CtIP-dependent double-strand break repair by interaction with CDK2. Nat Struct Mol Biol 19, 246–252 (2012). https://doi.org/10.1038/nsmb.2212

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2212

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing