Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Newly folded substrates inside the molecular cage of the HtrA chaperone DegQ

Abstract

The HtrA protein family combines chaperone and protease activities and is essential for protein quality control in many organisms. Whereas the mechanisms underlying the proteolytic function of HtrA proteins are well characterized, their chaperone activity remains poorly understood. Here we describe cryo-EM structures of Escherichia coli DegQ in its 12- and 24-mer states in complex with model substrates, providing a structural model of HtrA chaperone action. Up to six lysozyme substrates bind inside the DegQ 12-mer cage and are visualized in a close-to-native state. An asymmetric reconstruction reveals the binding of a well-ordered lysozyme to four DegQ protomers. DegQ PDZ domains are located adjacent to substrate density and their presence is required for chaperone activity. The substrate-interacting regions appear conserved in 12- and 24-mer cages, suggesting a common mechanism of chaperone function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The DegQ 24-mer cryo-EM map reveals a potential β-casein binding site.
Figure 2: DegQ 12-mer complexes with a peptide and lysozyme.
Figure 3: Five or six folded lysozymes are bound to the DegQ 12-mer.
Figure 4: Lysozyme–DegQ interaction.
Figure 5: Chaperone activity of DegQ.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Gottesman, S., Wickner, S. & Maurizi, M.R. Protein quality control: triage by chaperones and proteases. Genes Dev. 11, 815–823 (1997).

    Article  CAS  PubMed  Google Scholar 

  2. Wickner, S., Maurizi, M.R. & Gottesman, S. Posttranslational quality control: folding, refolding, and degrading proteins. Science 286, 1888–1893 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. Selkoe, D.J. Folding proteins in fatal ways. Nature 426, 900–904 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Clausen, T., Kaiser, M., Huber, R. & Ehrmann, M. HTRA proteases: regulated proteolysis in protein quality control. Nat. Rev. Mol. Cell Biol. 12, 152–162 (2011).

    Article  CAS  PubMed  Google Scholar 

  5. Chien, J., Campioni, M., Shridhar, V. & Baldi, A. HtrA serine proteases as potential therapeutic targets in cancer. Curr. Cancer Drug Targets 9, 451–468 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Grau, S. et al. Implications of the serine protease HtrA1 in amyloid precursor protein processing. Proc. Natl. Acad. Sci. USA 102, 6021–6026 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Plun-Favreau, H. et al. The mitochondrial protease HtrA2 is regulated by Parkinson's disease-associated kinase PINK1. Nat. Cell Biol. 9, 1243–1252 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Ingmer, H. & Brondsted, L. Proteases in bacterial pathogenesis. Res. Microbiol. 160, 704–710 (2009).

    Article  CAS  PubMed  Google Scholar 

  9. Krojer, T. et al. Structural basis for the regulated protease and chaperone function of DegP. Nature 453, 885–890 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. Sawa, J. et al. Molecular adaptation of the DegQ protease to exert protein quality control in the bacterial cell envelope. J. Biol. Chem. 286, 30680–30690 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Spiess, C., Beil, A. & Ehrmann, M. A temperature-dependent switch from chaperone to protease in a widely conserved heat shock protein. Cell 97, 339–347 (1999).

    Article  CAS  PubMed  Google Scholar 

  12. Walsh, N.P., Alba, B.M., Bose, B., Gross, C.A. & Sauer, R.T. OMP peptide signals initiate the envelope-stress response by activating DegS protease through relief of inhibition mediated by its PDZ domain. Cell 113, 61–71 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Wilken, C., Kitzing, K., Kurzbauer, R., Ehrmann, M. & Clausen, T. Crystal structure of the DegS stress sensor: How a PDZ domain recognizes misfolded protein and activates a protease. Cell 117, 483–494 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Kim, D.Y. & Kim, K.K. Structure and function of HtrA family proteins, the key players in protein quality control. J. Biochem. Mol. Biol. 38, 266–274 (2005).

    CAS  PubMed  Google Scholar 

  15. Li, W. et al. Structural insights into the pro-apoptotic function of mitochondrial serine protease HtrA2/Omi. Nat. Struct. Biol. 9, 436–441 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Truebestein, L. et al. Substrate-induced remodeling of the active site regulates human HTRA1 activity. Nat. Struct. Mol. Biol. 18, 386–388 (2011).

    Article  CAS  PubMed  Google Scholar 

  17. Jiang, J. et al. Activation of DegP chaperone-protease through formation of large cage-like oligomers upon binding to substrate proteins. Proc. Natl. Acad. Sci. USA 105, 11939–11944 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kim, S., Grant, R.A. & Sauer, R.T. Covalent linkage of distinct substrate degrons controls assembly and disassembly of DegP proteolytic cages. Cell 145, 67–78 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Krojer, T., Garrido-Franco, M., Huber, R., Ehrmann, M. & Clausen, T. Crystal structure of DegP (HtrA) reveals a new protease-chaperone machine. Nature 416, 455–459 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Shen, Q.T. et al. Bowl-shaped oligomeric structures on membranes as DegP's new functional forms in protein quality control. Proc. Natl. Acad. Sci. USA 106, 4858–4863 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wrase, R., Scott, H., Hilgenfeld, R. & Hansen, G. The Legionella HtrA homologue DegQ is a self-compartmentizing protease that forms large 12-meric assemblies. Proc. Natl. Acad. Sci. USA 108, 10490–10495 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Merdanovic, M. et al. Determinants of structural and functional plasticity of a widely conserved protease chaperone complex. Nat. Struct. Mol. Biol. 17, 837–843 (2010).

    Article  CAS  PubMed  Google Scholar 

  23. Topf, M. et al. Protein structure fitting and refinement guided by cryo-EM density. Structure 16, 295–307 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Krojer, T., Sawa, J., Huber, R. & Clausen, T. HtrA proteases have a conserved activation mechanism that can be triggered by distinct molecular cues. Nat. Struct. Mol. Biol. 17, 844–852 (2010).

    Article  CAS  PubMed  Google Scholar 

  25. Aquilina, J.A., Benesch, J.L., Bateman, O.A., Slingsby, C. & Robinson, C.V. Polydispersity of a mammalian chaperone: mass spectrometry reveals the population of oligomers in alphaB-crystallin. Proc. Natl. Acad. Sci. USA 100, 10611–10616 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. McCammon, M.G., Hernandez, H., Sobott, F. & Robinson, C.V. Tandem mass spectrometry defines the stoichiometry and quaternary structural arrangement of tryptophan molecules in the multiprotein complex TRAP. J. Am. Chem. Soc. 126, 5950–5951 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Sharon, M. et al. 20S proteasomes have the potential to keep substrates in store for continual degradation. J. Biol. Chem. 281, 9569–9575 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Sobott, F., Hernandez, H., McCammon, M.G., Tito, M.A. & Robinson, C.V. A tandem mass spectrometer for improved transmission and analysis of large macromolecular assemblies. Anal. Chem. 74, 1402–1407 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Itzhaki, L.S., Evans, P.A., Dobson, C.M. & Radford, S.E. Tertiary interactions in the folding pathway of hen lysozyme: kinetic studies using fluorescent probes. Biochemistry 33, 5212–5220 (1994).

    Article  CAS  PubMed  Google Scholar 

  30. Lin, J.L., Ruaan, R.C. & Hsieh, H.J. Refolding of partially and fully denatured lysozymes. Biotechnol. Lett. 29, 723–729 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Clare, D.K., Bakkes, P.J., van Heerikhuizen, H., van der Vies, S.M. & Saibil, H.R. Chaperonin complex with a newly folded protein encapsulated in the folding chamber. Nature 457, 107–110 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Muñoz, I.G. et al. Crystal structure of the open conformation of the mammalian chaperonin CCT in complex with tubulin. Nat. Struct. Mol. Biol. 18, 14–19 (2011).

    Article  PubMed  Google Scholar 

  33. Volokhina, E.B. et al. Role of the periplasmic chaperones Skp, SurA, and DegQ in outer membrane protein biogenesis in Neisseria meningitidis. J. Bacteriol. 193, 1612–1621 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sawa, J. et al. Molecular adaptation of the DegQ protease to exert protein quality control in the bacterial cell envelope. J. Biol. Chem. 286, 30680–30690 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Crowther, R.A., Henderson, R. & Smith, J.M. MRC image processing programs. J. Struct. Biol. 116, 9–16 (1996).

    Article  CAS  PubMed  Google Scholar 

  36. Ludtke, S.J., Baldwin, P.R. & Chiu, W. EMAN: semiautomated software for high-resolution single-particle reconstructions. J. Struct. Biol. 128, 82–97 (1999).

    Article  CAS  PubMed  Google Scholar 

  37. Mindell, J.A. & Grigorieff, N. Accurate determination of local defocus and specimen tilt in electron microscopy. J. Struct. Biol. 142, 334–347 (2003).

    Article  PubMed  Google Scholar 

  38. Frank, J. et al. SPIDER and WEB: processing and visualization of images in 3D electron microscopy and related fields. J. Struct. Biol. 116, 190–199 (1996).

    Article  CAS  PubMed  Google Scholar 

  39. van Heel, M., Harauz, G., Orlova, E.V., Schmidt, R. & Schatz, M. A new generation of the IMAGIC image processing system. J. Struct. Biol. 116, 17–24 (1996).

    Article  CAS  PubMed  Google Scholar 

  40. Sali, A. Comparative protein modeling by satisfaction of spatial restraints. Mol. Med. Today 1, 270–277 (1995).

    Article  CAS  PubMed  Google Scholar 

  41. Krojer, T. et al. Structural basis for the regulated protease and chaperone function of DegP. Nature 453, 885–890 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Goddard, T.D., Huang, C.C. & Ferrin, T.E. Visualizing density maps with UCSF Chimera. J. Struct. Biol. 157, 281–287 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Topf, M. et al. Protein structure fitting and refinement guided by cryo-EM density. Structure 16, 295–307 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Pringle, S.D. et al. An investigation of the mobility separation of some peptide and protein ions using a new hybrid quadrupole/travelling wave IMS/oa-ToF instrument. Int. J. Mass Spectrom. 261, 1–12 (2007).

    Article  CAS  Google Scholar 

  45. Tito, M.A., Tars, K., Valegard, K., Hajdu, J. & Robinson, C.V. Electrospray time of flight mass spectrometry of the intact MS2 virus capsid. J. Am. Chem. Soc. 122, 3550–3551 (2000).

    Article  CAS  Google Scholar 

  46. Spiess, C. et al. Biochemical characterization and mass spectrometric disulfide bond mapping of periplasmic alpha-amylase MalS of Escherichia coli. J. Biol. Chem. 272, 22125–22133 (1997).

    Article  CAS  PubMed  Google Scholar 

  47. Rouvière, P.E. & Gross, C.A. SurA, a periplasmic protein with peptidyl-prolyl isomerase activity, participates in the assembly of outer membrane porins. Genes Dev. 10, 3170–3182 (1996).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank D. Clare, N. Lukoyanova and E. Orlova for advice on EM data collection and processing; L. Wang, D. Houldershaw and R. Westlake for computing and EM support; and T. Daviter for help with fluorescence spectroscopy. This work was supported by Wellcome Trust (079605 and 089050) and European Science Foundation (BB/F010281/1) grants to H.R.S.; by ERA-Net NEURON, FWF I 235-B09, to F.C. and T.C. and by Institute of Structural and Molecular Biology Wellcome Trust studentships to J.Y. and K.T. The Research Institute of Molecular Pathology is funded by Boehringer Ingelheim.

Author information

Authors and Affiliations

Authors

Contributions

EM data collection and processing, fitting of atomic coordinates into EM maps and tryptophan fluorescence were carried out by H.M. under the supervision of H.R.S. Protein purification and complex formation were done by F.C., J.S. and H.M. MS experiments were conducted by J.Y. under the supervision of K.T. The refolding assays were carried out by J.S. and F.C. under the supervision of T.C. and M.E. H.R.S. and T.C. supervised the project. H.M., H.R.S. and T.C. wrote the manuscript.

Corresponding author

Correspondence to Helen R Saibil.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7, Supplementary Tables 1 and 2 and Supplementary Methods (PDF 6872 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malet, H., Canellas, F., Sawa, J. et al. Newly folded substrates inside the molecular cage of the HtrA chaperone DegQ. Nat Struct Mol Biol 19, 152–157 (2012). https://doi.org/10.1038/nsmb.2210

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2210

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing