Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The splicing factor SRSF1 regulates apoptosis and proliferation to promote mammary epithelial cell transformation

Abstract

The splicing-factor oncoprotein SRSF1 (also known as SF2/ASF or ASF/SF2) is upregulated in breast cancers. We investigated the ability of SRSF1 to transform human and mouse mammary epithelial cells in vivo and in vitro. SRSF1-overexpressing COMMA-1D cells formed tumors, following orthotopic transplantation to reconstitute the mammary gland. In three-dimensional (3D) culture, SRSF1-overexpressing MCF-10A cells formed larger acini than control cells, reflecting increased proliferation and delayed apoptosis during acinar morphogenesis. These effects required the first RNA-recognition motif and nuclear functions of SRSF1. SRSF1 overexpression promoted alternative splicing of BIM (also known as BCL2L11) and BIN1 to produce isoforms that lack pro-apoptotic functions and contribute to the phenotype. Finally, SRSF1 cooperated specifically with MYC to transform mammary epithelial cells, in part by potentiating eIF4E activation, and these cooperating oncogenes are significantly coexpressed in human breast tumors. Thus, SRSF1 can promote breast cancer, and SRSF1 itself or its downstream effectors may be valuable targets for the development of therapeutics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: SRSF1-overexpressing cells form tumors in an orthotopic allograft mouse model.
Figure 2: Overexpression of SRSF1 in MCF-10A cells increases acinar size in an mTOR-dependent manner.
Figure 3: Alternative splicing of target genes in 3D MCF-10A is involved in the SRSF1-induced phenotype.
Figure 4: The SRSF1-induced increase in acinar size requires RRM1 and SRSF1 nuclear functions.
Figure 5: SRSF1 cooperates with MYC but not with ERBB2 or HPV16 E7.
Figure 6: SRSF1 is frequently overexpressed in human breast tumors with elevated MYC.
Figure 7: A model for SRSF1's role in transformation.

Similar content being viewed by others

References

  1. Wang, E.T. et al. Alternative isoform regulation in human tissue transcriptomes. Nature 456, 470–476 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Cartegni, L., Chew, S.L. & Krainer, A.R. Listening to silence and understanding nonsense: exonic mutations that affect splicing. Nat. Rev. Genet. 3, 285–298 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Mayeda, A. & Krainer, A.R. Regulation of alternative pre-mRNA splicing by hnRNP A1 and splicing factor SF2. Cell 68, 365–375 (1992).

    Article  CAS  PubMed  Google Scholar 

  4. Cáceres, J.F., Stamm, S., Helfman, D.M. & Krainer, A.R. Regulation of alternative splicing in vivo by overexpression of antagonistic splicing factors. Science 265, 1706–1709 (1994).

    Article  PubMed  Google Scholar 

  5. Srebrow, A. & Kornblihtt, A.R. The connection between splicing and cancer. J. Cell Sci. 119, 2635–2641 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Ghigna, C., Moroni, M., Porta, C., Riva, S. & Biamonti, G. Altered expression of heterogenous nuclear ribonucleoproteins and SR factors in human colon adenocarcinomas. Cancer Res. 58, 5818–5824 (1998).

    CAS  PubMed  Google Scholar 

  7. Fischer, D.C. et al. Expression of splicing factors in human ovarian cancer. Oncol. Rep. 11, 1085–1090 (2004).

    CAS  PubMed  Google Scholar 

  8. He, X., Ee, P.L., Coon, J.S. & Beck, W.T. Alternative splicing of the multidrug resistance protein 1/ATP binding cassette transporter subfamily gene in ovarian cancer creates functional splice variants and is associated with increased expression of the splicing factors PTB and SRp20. Clin. Cancer Res. 10, 4652–4660 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Stickeler, E., Kittrell, F., Medina, D. & Berget, S.M. Stage-specific changes in SR splicing factors and alternative splicing in mammary tumorigenesis. Oncogene 18, 3574–3582 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Zhang, Z. & Krainer, A.R. Involvement of SR proteins in mRNA surveillance. Mol. Cell 16, 597–607 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Huang, Y., Gattoni, R., Stévenin, J. & Steitz, J.A. SR splicing factors serve as adapter proteins for TAP-dependent mRNA export. Mol. Cell 11, 837–843 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Michlewski, G., Sanford, J.R. & Cáceres, J.F. The splicing factor SF2/ASF regulates translation initiation by enhancing phosphorylation of 4E–BP1. Mol. Cell 30, 179–189 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. Sanford, J.R., Gray, N.K., Beckmann, K. & Cáceres, J.F. A novel role for shuttling SR proteins in mRNA translation. Genes Dev. 18, 755–768 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sun, S., Zhang, Z., Sinha, R., Karni, R. & Krainer, A.R. SF2/ASF autoregulation involves multiple layers of post-transcriptional and translational control. Nat. Struct. Mol. Biol. 17, 306–312 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Karni, R. et al. The gene encoding the splicing factor SF2/ASF is a proto-oncogene. Nat. Struct. Mol. Biol. 14, 185–193 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Pind, M.T. & Watson, P.H. SR protein expression and CD44 splicing pattern in human breast tumours. Breast Cancer Res. Treat. 79, 75–82 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Watermann, D.O. et al. Splicing factor Tra2-beta1 is specifically induced in breast cancer and regulates alternative splicing of the CD44 gene. Cancer Res. 66, 4774–4780 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Sinclair, C.S., Rowley, M., Naderi, A. & Couch, F.J. The 17q23 amplicon and breast cancer. Breast Cancer Res. Treat. 78, 313–322 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Deugnier, M.A. et al. Isolation of mouse mammary epithelial progenitor cells with basal characteristics from the Comma-Dbeta cell line. Dev. Biol. 293, 414–425 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Zhan, L. et al. Deregulation of scribble promotes mammary tumorigenesis and reveals a role for cell polarity in carcinoma. Cell 135, 865–878 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Debnath, J. & Brugge, J.S. Modelling glandular epithelial cancers in three-dimensional cultures. Nat. Rev. Cancer 5, 675–688 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Cáceres, J.F., Misteli, T., Screaton, G.R., Spector, D.L. & Krainer, A.R. Role of the modular domains of SR proteins in subnuclear localization and alternative splicing specificity. J. Cell Biol. 138, 225–238 (1997).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Wu, H. et al. A splicing-independent function of SF2/ASF in microRNA processing. Mol. Cell 38, 67–77 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Muthuswamy, S.K., Li, D., Lelievre, S., Bissell, M.J. & Brugge, J.S. ErbB2, but not ErbB1, reinitiates proliferation and induces luminal repopulation in epithelial acini. Nat. Cell Biol. 3, 785–792 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Debnath, J. et al. The role of apoptosis in creating and maintaining luminal space within normal and oncogene-expressing mammary acini. Cell 111, 29–40 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Karni, R., Hippo, Y., Lowe, S.W. & Krainer, A.R. The splicing-factor oncoprotein SF2/ASF activates mTORC1. Proc. Natl. Acad. Sci. USA 105, 15323–15327 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ghigna, C. et al. Cell motility is controlled by SF2/ASF through alternative splicing of the Ron protooncogene. Mol. Cell 20, 881–890 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Ge, K. et al. Mechanism for elimination of a tumor suppressor: aberrant splicing of a brain-specific exon causes loss of function of Bin1 in melanoma. Proc. Natl. Acad. Sci. USA 96, 9689–9694 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Scheper, G.C. et al. The N and C termini of the splice variants of the human mitogen-activated protein kinase-interacting kinase Mnk2 determine activity and localization. Mol. Cell. Biol. 23, 5692–5705 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Reginato, M.J. et al. Bim regulation of lumen formation in cultured mammary epithelial acini is targeted by oncogenes. Mol. Cell. Biol. 25, 4591–4601 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. O'Connor, L. et al. Bim: a novel member of the Bcl-2 family that promotes apoptosis. EMBO J. 17, 384–395 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mami, U., Miyashita, T., Shikama, Y., Tadokoro, K. & Yamada, M. Molecular cloning and characterization of six novel isoforms of human Bim, a member of the proapoptotic Bcl-2 family. FEBS Lett. 509, 135–141 (2001).

    Article  Google Scholar 

  33. Cáceres, J.F. & Krainer, A.R. Functional analysis of pre-mRNA splicing factor SF2/ASF structural domains. EMBO J. 12, 4715–4726 (1993).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Cazalla, D. et al. Nuclear export and retention signals in the RS domain of SR proteins. Mol. Cell. Biol. 22, 6871–6882 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Pedraza-Fariña, L.G. Mechanisms of oncogenic cooperation in cancer initiation and metastasis. Yale J. Biol. Med. 79, 95–103 (2006).

    PubMed  Google Scholar 

  36. Hynes, N.E. & Stoelzle, T. Key signalling nodes in mammary gland development and cancer: Myc. Breast Cancer Res. 11, 210 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Lee, E.Y. & Muller, W.J. Oncogenes and tumor suppressor genes. Cold Spring Harb. Perspect. Biol. 2, a003236 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Lin, C.J., Cencic, R., Mills, J.R., Robert, F. & Pelletier, J. c-Myc and eIF4F are components of a feedforward loop that links transcription and translation. Cancer Res. 68, 5326–5334 (2008).

    Article  CAS  PubMed  Google Scholar 

  39. Ruggero, D. et al. The translation factor eIF-4E promotes tumor formation and cooperates with c-Myc in lymphomagenesis. Nat. Med. 10, 484–486 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Miao, J. et al. Identification and characterization of BH3 domain protein Bim and its isoforms in human hepatocellular carcinomas. Apoptosis 12, 1691–1701 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Schwerk, C. & Schulze-Osthoff, K. Regulation of apoptosis by alternative pre-mRNA splicing. Mol. Cell 19, 1–13 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Moore, M.J., Wang, Q., Kennedy, C.J. & Silver, P.A. An alternative splicing network links cell-cycle control to apoptosis. Cell 142, 625–636 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Li, X., Wang, J. & Manley, J.L. Loss of splicing factor ASF/SF2 induces G2 cell cycle arrest and apoptosis, but inhibits internucleosomal DNA fragmentation. Genes Dev. 19, 2705–2714 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Inoki, K., Corradetti, M.N. & Guan, K.L. Dysregulation of the TSC-mTOR pathway in human disease. Nat. Genet. 37, 19–24 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Lazaris-Karatzas, A., Montine, K.S. & Sonenberg, N. Malignant transformation by a eukaryotic initiation factor subunit that binds to mRNA 5′ cap. Nature 345, 544–547 (1990).

    Article  CAS  PubMed  Google Scholar 

  46. Topisirovic, I., Ruiz-Gutierrez, M. & Borden, K.L. Phosphorylation of the eukaryotic translation initiation factor eIF4E contributes to its transformation and mRNA transport activities. Cancer Res. 64, 8639–8642 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. Dowling, R.J. et al. mTORC1-mediated cell proliferation, but not cell growth, controlled by the 4E-BPs. Science 328, 1172–1176 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ngo, J.C. et al. A sliding docking interaction is essential for sequential and processive phosphorylation of an SR protein by SRPK1. Mol. Cell 29, 563–576 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Tintaru, A.M. et al. Structural and functional analysis of RNA and TAP binding to SF2/ASF. EMBO Rep. 8, 756–762 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zuo, P. & Manley, J.L. Functional domains of the human splicing factor ASF/SF2. EMBO J. 12, 4727–4737 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Cáceres, J.F., Screaton, G.R. & Krainer, A.R. A specific subset of SR proteins shuttles continuously between the nucleus and the cytoplasm. Genes Dev. 12, 55–66 (1998).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Shaw, S.D., Chakrabarti, S., Ghosh, G. & Krainer, A.R. Deletion of the N-terminus of SF2/ASF permits RS-domain-independent pre-mRNA splicing. PLoS ONE 2, e854 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Yu, Q., Geng, Y. & Sicinski, P. Specific protection against breast cancers by cyclin D1 ablation. Nature 411, 1017–1021 (2001).

    Article  CAS  PubMed  Google Scholar 

  54. Li, S. et al. Translation factor eIF4E rescues cells from Myc-dependent apoptosis by inhibiting cytochrome c release. J. Biol. Chem. 278, 3015–3022 (2003).

    Article  CAS  PubMed  Google Scholar 

  55. Mao, D.Y. et al. Analysis of Myc bound loci identified by CpG island arrays shows that Max is essential for Myc-dependent repression. Curr. Biol. 13, 882–886 (2003).

    Article  CAS  PubMed  Google Scholar 

  56. Das, S., Anczuków, O., Akerman, M. & Krainer, A.R. SRSF1 is a critical transcriptional target of MYC. Cell Rep. (in the press).

  57. Elliott, K. et al. Bin1 functionally interacts with Myc and inhibits cell proliferation through multiple mechanisms. Oncogene 18, 3564–3573 (1999).

    Article  CAS  PubMed  Google Scholar 

  58. Sakamuro, D., Elliott, K.J., Wechsler-Reya, R. & Prendergast, G.C. BIN1 is a novel MYC-interacting protein with features of a tumour suppressor. Nat. Genet. 14, 69–77 (1996).

    Article  CAS  PubMed  Google Scholar 

  59. Debnath, J., Muthuswamy, S.K. & Brugge, J.S. Morphogenesis and oncogenesis of MCF-10A mammary epithelial acini grown in three-dimensional basement membrane cultures. Methods 30, 256–268 (2003).

    Article  CAS  PubMed  Google Scholar 

  60. Spancake, K.M. et al. E7-transduced human breast epithelial cells show partial differentiation in three-dimensional culture. Cancer Res. 59, 6042–6045 (1999).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. Egeblad, N. Tonks, V. Aranda and J. Novatt for helpful comments on the manuscript. We thank J. Erby Wilkinson for collaboration and helpful advice with histopathology, and we thank P. Moody for assistance with flow cytometry. This work was supported by grants from the National Cancer Institute (grant CA13106 to A.R.K. and CA098830 to S.K.M.), postdoctoral fellowships from the S.B. Komen Foundation for the Cure (grant KG091029 to O.A.) and from the Fondation pour la Recherche Médicale (grant SPE20070709581 to O.A.), an award grant from the Philippe Foundation to O.A. and an Era of Hope Scholar award from the Department of Defense Breast Cancer Research Program (grant BC075024 to S.K.M.).

Author information

Authors and Affiliations

Authors

Contributions

O.A. conducted the experiments. S.D. contributed to the apoptosis assays. M.A. conducted the microarray and statistical analyses. L.Z. contributed to the transplantation experiments. A.Z.R., R.K. and S.K.M. shared protocols and reagents. O.A. and A.R.K. designed the study, analyzed the data and wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Adrian R Krainer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7, Supplementary Table 1 and Supplementary Methods (PDF 4123 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anczuków, O., Rosenberg, A., Akerman, M. et al. The splicing factor SRSF1 regulates apoptosis and proliferation to promote mammary epithelial cell transformation. Nat Struct Mol Biol 19, 220–228 (2012). https://doi.org/10.1038/nsmb.2207

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2207

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer