Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dynein achieves processive motion using both stochastic and coordinated stepping

Abstract

Processivity, the ability of single molecules to move continuously along a track, is a fundamental requirement of cargo-transporting molecular motors. Here, we investigate how cytoplasmic dynein, a homodimeric, microtubule-based motor, achieves processive motion. To do this, we developed a versatile method for assembling Saccharomyces cerevisiae dynein heterodimers, using complementary DNA oligonucleotides covalently linked to dynein monomers labeled with different organic fluorophores. Using two-color, single-molecule microscopy and high-precision, two-dimensional tracking, we find that dynein has a highly variable stepping pattern that is distinct from all other processive cytoskeletal motors, which use 'hand-over-hand' mechanisms. Uniquely, dynein stepping is stochastic when its two motor domains are close together. However, coordination emerges as the distance between motor domains increases, implying that a tension-based mechanism governs these steps. This plasticity may allow tuning of dynein for its diverse cellular functions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Dynein structure and constructs used in this study.
Figure 2: Two-dimensional stepping analysis of GST–dynein homodimers.
Figure 3: DNA-based dynein heterodimers are functional and step similarly to protein-based dynein homodimers.
Figure 4: Two-color tracking of dynein stepping.
Figure 5: Spatial arrangement of dynein motor domains during the two-head-bound state.
Figure 6: Dynein steps are stochastic at short head-to-head spacing and coordinated as head-to-head spacing increases.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Eschbach, J. & Dupuis, L. Cytoplasmic dynein in neurodegeneration. Pharmacol. Ther. 130, 348–363 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. Wynshaw-Boris, A. Lissencephaly and LIS1: insights into the molecular mechanisms of neuronal migration and development. Clin. Genet. 72, 296–304 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. King, S.J. & Schroer, T.A. Dynactin increases the processivity of the cytoplasmic dynein motor. Nat. Cell Biol. 2, 20–24 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Mallik, R., Carter, B.C., Lex, S.A., King, S.J. & Gross, S.P. Cytoplasmic dynein functions as a gear in response to load. Nature 427, 649–652 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Reck-Peterson, S.L. et al. Single-molecule analysis of dynein processivity and stepping behavior. Cell 126, 335–348 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ross, J.L., Wallace, K., Shuman, H., Goldman, Y.E. & Holzbaur, E.L. Processive bidirectional motion of dynein-dynactin complexes in vitro. Nat. Cell Biol. 8, 562–570 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Toba, S., Watanabe, T.M., Yamaguchi-Okimoto, L., Toyoshima, Y.Y. & Higuchi, H. Overlapping hand-over-hand mechanism of single molecular motility of cytoplasmic dynein. Proc. Natl. Acad. Sci. USA 103, 5741–5745 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wang, Z., Khan, S. & Sheetz, M.P. Single cytoplasmic dynein molecule movements: characterization and comparison with kinesin. Biophys. J. 69, 2011–2023 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kardon, J.R. & Vale, R.D. Regulators of the cytoplasmic dynein motor. Nat. Rev. Mol. Cell Biol. 10, 854–865 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Burgess, S.A., Walker, M.L., Sakakibara, H., Knight, P.J. & Oiwa, K. Dynein structure and power stroke. Nature 421, 715–718 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Kon, T. et al. Helix sliding in the stalk coiled coil of dynein couples ATPase and microtubule binding. Nat. Struct. Mol. Biol. 16, 325–333 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Roberts, A.J. et al. AAA+ Ring and linker swing mechanism in the dynein motor. Cell 136, 485–495 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Vale, R.D. Switches, latches, and amplifiers: common themes of G proteins and molecular motors. J. Cell Biol. 135, 291–302 (1996).

    Article  CAS  PubMed  Google Scholar 

  14. Gibbons, I.R. et al. Photosensitized cleavage of dynein heavy chains. Cleavage at the 'V1 site' by irradiation at 365 nm in the presence of ATP and vanadate. J. Biol. Chem. 262, 2780–2786 (1987).

    CAS  PubMed  Google Scholar 

  15. Cho, C., Reck-Peterson, S.L. & Vale, R.D. Regulatory ATPase sites of cytoplasmic dynein affect processivity and force generation. J. Biol. Chem. 283, 25839–25845 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kon, T., Nishiura, M., Ohkura, R., Toyoshima, Y.Y. & Sutoh, K. Distinct functions of nucleotide-binding/hydrolysis sites in the four AAA modules of cytoplasmic dynein. Biochemistry 43, 11266–11274 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Silvanovich, A., Li, M.G., Serr, M., Mische, S. & Hays, T.S. The third P-loop domain in cytoplasmic dynein heavy chain is essential for dynein motor function and ATP-sensitive microtubule binding. Mol. Biol. Cell 14, 1355–1365 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Carter, A.P., Cho, C., Jin, L. & Vale, R.D. Crystal structure of the dynein motor domain. Science 331, 1159–1165 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Carter, A.P. et al. Structure and functional role of dynein's microtubule-binding domain. Science 322, 1691–1695 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kon, T., Sutoh, K. & Kurisu, G. X-ray structure of a functional full-length dynein motor domain. Nat. Struct. Mol. Biol. 18, 638–642 (2011).

    Article  CAS  PubMed  Google Scholar 

  21. Shima, T., Imamula, K., Kon, T., Ohkura, R. & Sutoh, K. Head-head coordination is required for the processive motion of cytoplasmic dynein, an AAA+ molecular motor. J. Struct. Biol. 156, 182–189 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Gennerich, A., Carter, A.P., Reck-Peterson, S.L. & Vale, R.D. Force-induced bidirectional stepping of cytoplasmic dynein. Cell 131, 952–965 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gennerich, A. & Vale, R.D. Walking the walk: how kinesin and dynein coordinate their steps. Curr. Opin. Cell Biol. 21, 59–67 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sellers, J.R. & Veigel, C. Walking with myosin V. Curr. Opin. Cell Biol. 18, 68–73 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Sweeney, H.L. & Houdusse, A. Myosin VI rewrites the rules for myosin motors. Cell 141, 573–582 (2010).

    Article  CAS  PubMed  Google Scholar 

  26. Yildiz, A. et al. Myosin V walks hand-over-hand: single fluorophore imaging with 1.5-nm localization. Science 300, 2061–2065 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Yildiz, A., Tomishige, M., Vale, R.D. & Selvin, P.R. Kinesin walks hand-over-hand. Science 303, 676–678 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Samsó, M. & Koonce, M.P. 25 Angstrom resolution structure of a cytoplasmic dynein motor reveals a seven-member planar ring. J. Mol. Biol. 340, 1059–1072 (2004).

    Article  PubMed  Google Scholar 

  29. Su, X. et al. Mechanisms underlying the dual-mode regulation of microtubule dynamics by Kip3/kinesin8. Mol. Cell 43, 751–763 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ray, S., Meyhofer, E., Milligan, R.A. & Howard, J. Kinesin follows the microtubule's protofilament axis. J. Cell Biol. 121, 1083–1093 (1993).

    Article  CAS  PubMed  Google Scholar 

  31. Ray, S., Wolf, S.G., Howard, J. & Downing, K.H. Kinesin does not support the motility of zinc-macrotubes. Cell Motil. Cytoskeleton 30, 146–152 (1995).

    Article  CAS  PubMed  Google Scholar 

  32. Banaszynski, L.A., Liu, C.W. & Wandless, T.J. Characterization of the FKBP.rapamycin.FRB ternary complex. J. Am. Chem. Soc. 127, 4715–4721 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Markham, N.R. & Zuker, M. DINAMelt web server for nucleic acid melting prediction. Nucleic Acids Res. 33, W577–W581 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Miyazono, Y., Hayashi, M., Karagiannis, P., Harada, Y. & Tadakuma, H. Strain through the neck linker ensures processive runs: a DNA-kinesin hybrid nanomachine study. EMBO J. 29, 93–106 (2010).

    Article  CAS  PubMed  Google Scholar 

  35. Essevaz-Roulet, B., Bockelmann, U. & Heslot, F. Mechanical separation of the complementary strands of DNA. Proc. Natl. Acad. Sci. USA 94, 11935–11940 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Thompson, R.E., Larson, D.R. & Webb, W.W. Precise nanometer localization analysis for individual fluorescent probes. Biophys. J. 82, 2775–2783 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Churchman, L.S., Okten, Z., Rock, R.S., Dawson, J.F. & Spudich, J.A. Single molecule high-resolution colocalization of Cy3 and Cy5 attached to macromolecules measures intramolecular distances through time. Proc. Natl. Acad. Sci. USA 102, 1419–1423 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yildiz, A., Tomishige, M., Gennerich, A. & Vale, R.D. Intramolecular strain coordinates kinesin stepping behavior along microtubules. Cell 134, 1030–1041 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rosenfeld, S.S. & Sweeney, H.L. A model of myosin V processivity. J. Biol. Chem. 279, 40100–40111 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Purcell, T.J., Sweeney, H.L. & Spudich, J.A. A force-dependent state controls the coordination of processive myosin V. Proc. Natl. Acad. Sci. USA 102, 13873–13878 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Veigel, C., Schmitz, S., Wang, F. & Sellers, J.R. Load-dependent kinetics of myosin-V can explain its high processivity. Nat. Cell Biol. 7, 861–869 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Sweeney, H.L. et al. How myosin VI coordinates its heads during processive movement. EMBO J. 26, 2682–2692 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Dunn, A.R., Chuan, P., Bryant, Z. & Spudich, J.A. Contribution of the myosin VI tail domain to processive stepping and intramolecular tension sensing. Proc. Natl. Acad. Sci. USA 107, 7746–7750 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Baboolal, T.G. et al. The SAH domain extends the functional length of the myosin lever. Proc. Natl. Acad. Sci. USA 106, 22193–22198 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Elting, M.W., Bryant, Z., Liao, J.C. & Spudich, J.A. Detailed tuning of structure and intramolecular communication are dispensable for processive motion of myosin VI. Biophys. J. 100, 430–439 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Numata, N., Shima, T., Ohkura, R., Kon, T. & Sutoh, K. C-sequence of the Dictyostelium cytoplasmic dynein participates in processivity modulation. FEBS Lett. 585, 1185–1190 (2011).

    Article  CAS  PubMed  Google Scholar 

  47. Dixit, R., Ross, J.L., Goldman, Y.E. & Holzbaur, E.L. Differential regulation of dynein and kinesin motor proteins by tau. Science 319, 1086–1089 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ross, J.L., Shuman, H., Holzbaur, E.L. & Goldman, Y.E. Kinesin and dynein-dynactin at intersecting microtubules: motor density affects dynein function. Biophys. J. 94, 3115–3125 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lawrence, C.J., Morris, N.R., Meagher, R.B. & Dawe, R.K. Dyneins have run their course in plant lineage. Traffic 2, 362–363 (2001).

    Article  CAS  PubMed  Google Scholar 

  50. Wickstead, B. & Gull, K. Dyneins across eukaryotes: a comparative genomic analysis. Traffic 8, 1708–1721 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ishikawa, T., Sakakibara, H. & Oiwa, K. The architecture of outer dynein arms in situ. J. Mol. Biol. 368, 1249–1258 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Mizuno, N., Narita, A., Kon, T., Sutoh, K. & Kikkawa, M. Three-dimensional structure of cytoplasmic dynein bound to microtubules. Proc. Natl. Acad. Sci. USA 104, 20832–20837 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Nicastro, D. et al. The molecular architecture of axonemes revealed by cryoelectron tomography. Science 313, 944–948 (2006).

    Article  CAS  PubMed  Google Scholar 

  54. Ueno, H., Yasunaga, T., Shingyoji, C. & Hirose, K. Dynein pulls microtubules without rotating its stalk. Proc. Natl. Acad. Sci. USA 105, 19702–19707 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank X. Su and D. Pellman (Harvard Medical School) for providing purified kinesin-8; S. Zou for technical assistance; A. Carter, S. Churchman, A. Gennerich, Y. Goldman, A. Hendricks, J. Huang, A. Leschziner and A. Roberts for critical comments on the manuscript; F. Aguet, A. Besser, M. Vilela and G. Danuser for discussions of data analysis; M. Bagonis for early work on oligomer-SNAP linking; A. Leschziner for help with figure design; and A. Carter for providing MATLAB code. W.Q. is supported by a postdoctoral fellowship from the American Heart Association. S.L.R.-P. is funded by the Rita Allen Foundation, the Harvard Armenise Foundation and a US National Institutes of Health New Innovator award (1 DP2 OD004268-01).

Author information

Authors and Affiliations

Authors

Contributions

W.Q. and N.D.D. contributed equally. W.Q., N.D.D., W.S. and S.L.R.-P. designed the experiments. W.Q., N.D.D. and B.S.G. conducted the experiments and analyzed the data. W.Q., N.D.D., B.S.G. and S.L.R.-P. wrote the paper. E.V. and D.W. wrote the two-dimensional particle tracking code.

Corresponding author

Correspondence to Samara L Reck-Peterson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5, Supplementary Tables 1 and 2 and Supplementary Methods (PDF 5618 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qiu, W., Derr, N., Goodman, B. et al. Dynein achieves processive motion using both stochastic and coordinated stepping. Nat Struct Mol Biol 19, 193–200 (2012). https://doi.org/10.1038/nsmb.2205

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2205

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing