Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ndc10 is a platform for inner kinetochore assembly in budding yeast

Abstract

Kinetochores link centromeric DNA to spindle microtubules and ensure faithful chromosome segregation during mitosis. In point-centromere yeasts, the CBF3 complex Skp1–Ctf13–(Cep3)2–(Ndc10)2 recognizes a conserved centromeric DNA element through contacts made by Cep3 and Ndc10. We describe here the five-domain organization of Kluyveromyces lactis Ndc10 and the structure at 2.8 Å resolution of domains I–II (residues 1–402) bound to DNA. The structure resembles tyrosine DNA recombinases, although it lacks both endonuclease and ligase activities. Structural and biochemical data demonstrate that each subunit of the Ndc10 dimer binds a separate fragment of DNA, suggesting that Ndc10 stabilizes a DNA loop at the centromere. We describe in vitro association experiments showing that specific domains of Ndc10 interact with each of the known inner-kinetochore proteins or protein complexes in budding yeast. We propose that Ndc10 provides a central platform for inner-kinetochore assembly.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Domains of K. lactis Ndc10 and crystal structure of DI–II.
Figure 2: Surface charge distribution and DNA contacts of Ndc10 DI–II.
Figure 3: Structural alignment of K. lactis Ndc10 DI–II with Flp recombinases.
Figure 4: Dimerization of K. lactis Ndc10 DI–III.
Figure 5: Interactions of Ndc10-associated proteins or protein complexes in the inner kinetochore.
Figure 6: Interaction of Ndc10 domain IV–V with N-terminal Scm3.
Figure 7: Schematic model of Ndc10 interactions on budding yeast centromeres.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

References

  1. Clarke, L. & Baum, M.P. Functional analysis of a centromere from fission yeast: a role for centromere-specific repeated DNA sequences. Mol. Cell. Biol. 10, 1863–1872 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Fitzgerald-Hayes, M., Clarke, L. & Carbon, J. Nucleotide sequence comparisons and functional analysis of yeast centromere DNAs. Cell 29, 235–244 (1982).

    Article  CAS  PubMed  Google Scholar 

  3. Murphy, T.D. & Karpen, G.H. Localization of centromere function in a Drosophila minichromosome. Cell 82, 599–609 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Willard, H.F. Centromeres of mammalian chromosomes. Trends Genet. 6, 410–416 (1990).

    Article  CAS  PubMed  Google Scholar 

  5. Meraldi, P., McAinsh, A.D., Rheinbay, E. & Sorger, P.K. Phylogenetic and structural analysis of centromeric DNA and kinetochore proteins. Genome Biol. 7, R23 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Joglekar, A.P. et al. Molecular architecture of the kinetochore-microtubule attachment site is conserved between point and regional centromeres. J. Cell Biol. 181, 587–594 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cho, U.S. & Harrison, S.C. Recognition of the centromere-specific histone Cse4 by the chaperone Scm3. Proc. Natl. Acad. Sci. USA 108, 9367–9371 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hu, H. et al. Structure of a CENP-A-histone H4 heterodimer in complex with chaperone HJURP. Genes Dev. 25, 901–906 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. McAinsh, A.D., Tytell, J.D. & Sorger, P.K. Structure, function, and regulation of budding yeast kinetochores. Annu. Rev. Cell Dev. Biol. 19, 519–539 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Earnshaw, W.C. & Rothfield, N. Identification of a family of human centromere proteins using autoimmune sera from patients with scleroderma. Chromosoma 91, 313–321 (1985).

    Article  CAS  PubMed  Google Scholar 

  11. Meluh, P.B., Yang, P., Glowczewski, L., Koshland, D. & Smith, M.M. Cse4p is a component of the core centromere of Saccharomyces cerevisiae. Cell 94, 607–613 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Palmer, D.K., O'Day, K., Wener, M.H., Andrews, B.S. & Margolis, R.L. A 17-kD centromere protein (CENP-A) copurifies with nucleosome core particles and with histones. J. Cell Biol. 104, 805–815 (1987).

    Article  CAS  PubMed  Google Scholar 

  13. Stoler, S., Keith, K.C., Curnick, K.E. & Fitzgerald-Hayes, M. A mutation in CSE4, an essential gene encoding a novel chromatin-associated protein in yeast, causes chromosome nondisjunction and cell cycle arrest at mitosis. Genes Dev. 9, 573–586 (1995).

    Article  CAS  PubMed  Google Scholar 

  14. Brown, M.T. Sequence similarities between the yeast chromosome segregation protein Mif2 and the mammalian centromere protein CENP-C. Gene 160, 111–116 (1995).

    Article  CAS  PubMed  Google Scholar 

  15. Meluh, P.B. & Koshland, D. Evidence that the MIF2 gene of Saccharomyces cerevisiae encodes a centromere protein with homology to the mammalian centromere protein CENP-C. Mol. Biol. Cell 6, 793–807 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Saitoh, H. et al. CENP-C, an autoantigen in scleroderma, is a component of the human inner kinetochore plate. Cell 70, 115–125 (1992).

    Article  CAS  PubMed  Google Scholar 

  17. Yang, C.H., Tomkiel, J., Saitoh, H., Johnson, D.H. & Earnshaw, W.C. Identification of overlapping DNA-binding and centromere-targeting domains in the human kinetochore protein CENP-C. Mol. Cell. Biol. 16, 3576–3586 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Clarke, L. & Carbon, J. Isolation of a yeast centromere and construction of functional small circular chromosomes. Nature 287, 504–509 (1980).

    Article  CAS  PubMed  Google Scholar 

  19. Cohen, R.L. et al. Structural and functional dissection of Mif2p, a conserved DNA-binding kinetochore protein. Mol. Biol. Cell 19, 4480–4491 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cole, H.A., Howard, B.H. & Clark, D.J. The centromeric nucleosome of budding yeast is perfectly positioned and covers the entire centromere. Proc. Natl. Acad. Sci. USA 108, 12687–12692 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mizuguchi, G., Xiao, H., Wisniewski, J., Smith, M.M. & Wu, C. Nonhistone Scm3 and histones CenH3–H4 assemble the core of centromere-specific nucleosomes. Cell 129, 1153–1164 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Dechassa, M.L. et al. Structure and Scm3-mediated assembly of budding yeast centromeric nucleosomes. Nat. Commun. 2, 313 (2011).

    Article  PubMed  Google Scholar 

  23. Mellor, J., Rathjen, J., Jiang, W., Barnes, C.A. & Dowell, S.J. DNA binding of CPF1 is required for optimal centromere function but not for maintaining methionine prototrophy in yeast. Nucleic Acids Res. 19, 2961–2969 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Doheny, K.F. et al. Identification of essential components of the S. cerevisiae kinetochore. Cell 73, 761–774 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Goh, P.Y. & Kilmartin, J.V. NDC10: a gene involved in chromosome segregation in Saccharomyces cerevisiae. J. Cell Biol. 121, 503–512 (1993).

    Article  CAS  PubMed  Google Scholar 

  26. Hyman, A.A., Middleton, K., Centola, M., Mitchison, T.J. & Carbon, J. Microtubule-motor activity of a yeast centromere-binding protein complex. Nature 359, 533–536 (1992).

    Article  CAS  PubMed  Google Scholar 

  27. Lechner, J. & Carbon, J. A 240 kd multisubunit protein complex, CBF3, is a major component of the budding yeast centromere. Cell 64, 717–725 (1991).

    Article  CAS  PubMed  Google Scholar 

  28. Russell, I.D., Grancell, A.S. & Sorger, P.K. The unstable F-box protein p58-Ctf13 forms the structural core of the CBF3 kinetochore complex. J. Cell Biol. 145, 933–950 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Strunnikov, A.V., Kingsbury, J. & Koshland, D. CEP3 encodes a centromere protein of Saccharomyces cerevisiae. J. Cell Biol. 128, 749–760 (1995).

    Article  CAS  PubMed  Google Scholar 

  30. Dunleavy, E.M. et al. HJURP is a cell-cycle-dependent maintenance and deposition factor of CENP-A at centromeres. Cell 137, 485–497 (2009).

    Article  CAS  PubMed  Google Scholar 

  31. Foltz, D.R. et al. Centromere-specific assembly of CENP-a nucleosomes is mediated by HJURP. Cell 137, 472–484 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kato, T. et al. Activation of Holliday junction recognizing protein involved in the chromosomal stability and immortality of cancer cells. Cancer Res. 67, 8544–8553 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Sanchez-Pulido, L., Pidoux, A.L., Ponting, C.P. & Allshire, R.C. Common ancestry of the CENP-A chaperones Scm3 and HJURP. Cell 137, 1173–1174 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Jiang, W., Lechner, J. & Carbon, J. Isolation and characterization of a gene (CBF2) specifying a protein component of the budding yeast kinetochore. J. Cell Biol. 121, 513–519 (1993).

    Article  CAS  PubMed  Google Scholar 

  35. Espelin, C.W., Kaplan, K.B. & Sorger, P.K. Probing the architecture of a simple kinetochore using DNA-protein crosslinking. J. Cell Biol. 139, 1383–1396 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Espelin, C.W., Simons, K.T., Harrison, S.C. & Sorger, P.K. Binding of the essential Saccharomyces cerevisiae kinetochore protein Ndc10p to CDEII. Mol. Biol. Cell 14, 4557–4568 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kaplan, K.B., Hyman, A.A. & Sorger, P.K. Regulating the yeast kinetochore by ubiquitin-dependent degradation and Skp1p-mediated phosphorylation. Cell 91, 491–500 (1997).

    Article  CAS  PubMed  Google Scholar 

  38. Bouck, D.C. & Bloom, K.S. The kinetochore protein Ndc10p is required for spindle stability and cytokinesis in yeast. Proc. Natl. Acad. Sci. USA 102, 5408–5413 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yoon, H.J. & Carbon, J. Participation of Bir1p, a member of the inhibitor of apoptosis family, in yeast chromosome segregation events. Proc. Natl. Acad. Sci. USA 96, 13208–13213 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Heus, J.J., Zonneveld, B.J., Steensma, H.Y. & Van den Berg, J.A. Centromeric DNA of Kluyveromyces lactis. Curr. Genet. 18, 517–522 (1990).

    Article  CAS  PubMed  Google Scholar 

  41. Heus, J.J., Zonneveld, B.J., de Steensma, H.Y. & van den Berg, J.A. The consensus sequence of Kluyveromyces lactis centromeres shows homology to functional centromeric DNA from Saccharomyces cerevisiae. Mol. Gen. Genet. 236, 355–362 (1993).

    CAS  PubMed  Google Scholar 

  42. Sorger, P.K. et al. Two genes required for the binding of an essential Saccharomyces cerevisiae kinetochore complex to DNA. Proc. Natl. Acad. Sci. USA 92, 12026–12030 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bellizzi, J.J., III, Sorger, P.K. & Harrison, S.C. Crystal structure of the yeast inner kinetochore subunit Cep3p. Structure 15, 1422–1430 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Holm, L., Kaariainen, S., Wilton, C. & Plewczynski, D. Using Dali for structural comparison of proteins. Curr. Protoc. Bioinformatics Chapter 5, Unit 5.5 (2006).

    PubMed  Google Scholar 

  45. Krissinel, E. & Henrick, K. Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions. Acta Crystallogr. D Biol. Crystallogr. 60, 2256–2268 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Conway, A.B., Chen, Y. & Rice, P.A. Structural plasticity of the Flp-Holliday junction complex. J. Mol. Biol. 326, 425–434 (2003).

    Article  CAS  PubMed  Google Scholar 

  47. Guo, F., Gopaul, D.N. & van Duyne, G.D. Structure of Cre recombinase complexed with DNA in a site-specific recombination synapse. Nature 389, 40–46 (1997).

    Article  CAS  PubMed  Google Scholar 

  48. Altschul, S.F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Goodwin, T.J., Butler, M.I. & Poulter, R.T. Cryptons: a group of tyrosine-recombinase-encoding DNA transposons from pathogenic fungi. Microbiology 149, 3099–3109 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. Stoyan, T. & Carbon, J. Inner kinetochore of the pathogenic yeast Candida glabrata. Eukaryot. Cell 3, 1154–1163 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Camahort, R. et al. Scm3 is essential to recruit the histone h3 variant cse4 to centromeres and to maintain a functional kinetochore. Mol. Cell 26, 853–865 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Aravind, L., Iyer, L.M. & Wu, C. Domain architectures of the Scm3p protein provide insights into centromere function and evolution. Cell Cycle 6, 2511–2515 (2007).

    Article  CAS  PubMed  Google Scholar 

  53. Yeh, E. et al. Pericentric chromatin is organized into an intramolecular loop in mitosis. Curr. Biol. 18, 81–90 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Adams, P.D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the staff at the Advanced Photon Source NE-CAT beamlines for advice and assistance with data collection and interpretation, D. King of the Howard Hughes Medical Institute Mass Spectrometry Facility, University of California, Berkeley, for mass spectrometry, and K. Corbett and P. Sorger for helpful discussions. This research was supported by the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Contributions

U.-S.C. designed and conducted experiments, determined and refined the structures, analyzed data and wrote the manuscript; S.C.H directed the project, analyzed data and wrote the manuscript.

Corresponding author

Correspondence to Stephen C Harrison.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 and Supplementary Methods (PDF 9848 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cho, US., Harrison, S. Ndc10 is a platform for inner kinetochore assembly in budding yeast. Nat Struct Mol Biol 19, 48–55 (2012). https://doi.org/10.1038/nsmb.2178

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2178

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing