Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The RNA accordion model for template positioning by telomerase RNA during telomeric DNA synthesis

Abstract

Telomerase is a ribonucleoprotein (RNP) enzyme that maintains the ends of linear eukaryotic chromosomes and whose activation is a hallmark of 90% of all cancers. This RNP minimally contains a reverse transcriptase protein subunit (TERT) that catalyzes telomeric DNA synthesis and an RNA subunit (TER) that has templating, architectural and protein-scaffolding roles. Telomerase is unique among polymerases in that it synthesizes multiple copies of the template on the 3′ end of a primer following a single binding event, a process known as repeat addition processivity (RAP). Using biochemical assays and single-molecule Förster resonance energy transfer (smFRET) experiments on Tetrahymena thermophila telomerase, we now directly demonstrate that TER contributes to template positioning within the active site and to the template translocation required for RAP. We propose that the single-stranded RNA elements flanking the template act as a molecular accordion, undergoing reciprocal extension and compaction during telomerase translocation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The RNA accordion model for primer positioning and translocation.
Figure 2: Deletion mutants in the TRE have predictable primer usage profiles.
Figure 3: The accordion model predicts primer usage for TRE deletion mutants.
Figure 4: Single-molecule FRET measurements of RNA compression and extension at successive steps of telomere repeat synthesis.

Similar content being viewed by others

References

  1. Greider, C.W. & Blackburn, E.H. The telomere terminal transferase of Tetrahymena is a ribonucleoprotein enzyme with two kinds of primer specificity. Cell 51, 887–898 (1987).

    Article  CAS  PubMed  Google Scholar 

  2. Lingner, J. et al. Reverse transcriptase motifs in the catalytic subunit of telomerase. Science 276, 561–567 (1997).

    Article  CAS  PubMed  Google Scholar 

  3. Romero, D.P. & Blackburn, E.H. A conserved secondary structure for telomerase RNA. Cell 67, 343–353 (1991).

    Article  CAS  PubMed  Google Scholar 

  4. Chen, J.L., Blasco, M.A. & Greider, C.W. Secondary structure of vertebrate telomerase RNA. Cell 100, 503–514 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. ten Dam, E., van Belkum, A. & Pleij, K. A conserved pseudoknot in telomerase RNA. Nucleic Acids Res. 19, 6951 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chen, J.L. & Greider, C.W. An emerging consensus for telomerase RNA structure. Proc. Natl. Acad. Sci. USA 101, 14683–14684 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tzfati, Y., Fulton, T.B., Roy, J. & Blackburn, E.H. Template boundary in a yeast telomerase specified by RNA structure. Science 288, 863–867 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Autexier, C. & Greider, C.W. Boundary elements of the Tetrahymena telomerase RNA template and alignment domains. Genes Dev. 9, 2227–2239 (1995).

    Article  CAS  PubMed  Google Scholar 

  9. Gilley, D. & Blackburn, E.H. Specific RNA residue interactions required for enzymatic functions of Tetrahymena telomerase. Mol. Cell. Biol. 16, 66–75 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Licht, J.D. & Collins, K. Telomerase RNA function in recombinant Tetrahymena telomerase. Genes Dev. 13, 1116–1125 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Shefer, K. et al. A triple helix within a pseudoknot is a conserved and essential element of telomerase RNA. Mol. Cell. Biol. 27, 2130–2143 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Theimer, C.A., Blois, C.A. & Feigon, J. Structure of the human telomerase RNA pseudoknot reveals conserved tertiary interactions essential for function. Mol. Cell 17, 671–682 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Tzfati, Y., Knight, Z., Roy, J. & Blackburn, E.H. A novel pseudoknot element is essential for the action of a yeast telomerase. Genes Dev. 17, 1779–1788 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mason, D.X., Goneska, E. & Greider, C.W. Stem-loop IV of Tetrahymena telomerase RNA stimulates processivity in trans. Mol. Cell. Biol. 23, 5606–5613 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Miller, M.C. & Collins, K. Telomerase recognizes its template by using an adjacent RNA motif. Proc. Natl. Acad. Sci. USA 99, 6585–6590 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Berman, A.J., Gooding, A.R. & Cech, T.R. Tetrahymena telomerase protein p65 induces conformational changes throughout telomerase RNA (TER) and rescues telomerase reverse transcriptase and TER assembly mutants. Mol. Cell. Biol. 30, 4965–4976 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lai, C.K., Miller, M.C. & Collins, K. Template boundary definition in Tetrahymena telomerase. Genes Dev. 16, 415–420 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chen, J.L. & Greider, C.W. Template boundary definition in mammalian telomerase. Genes Dev. 17, 2747–2752 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Stone, M.D. et al. Stepwise protein-mediated RNA folding directs assembly of telomerase ribonucleoprotein. Nature 446, 458–461 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Witkin, K.L. & Collins, K. Holoenzyme proteins required for the physiological assembly and activity of telomerase. Genes Dev. 18, 1107–1118 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. O'Connor, C.M., Lai, C.K. & Collins, K. Two purified domains of telomerase reverse transcriptase reconstitute sequence-specific interactions with RNA. J. Biol. Chem. 280, 17533–17539 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Wu, J.Y., Stone, M.D. & Zhuang, X. A single-molecule assay for telomerase structure-function analysis. Nucleic Acids Res. 38, e16 (2010).

    Article  PubMed  Google Scholar 

  23. Collins, K. & Gandhi, L. The reverse transcriptase component of the Tetrahymena telomerase ribonucleoprotein complex. Proc. Natl. Acad. Sci. USA 95, 8485–8490 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kaushik, N. et al. Biochemical analysis of catalytically crucial aspartate mutants of human immunodeficiency virus type 1 reverse transcriptase. Biochemistry 35, 11536–11546 (1996).

    Article  CAS  PubMed  Google Scholar 

  25. Patel, P.H. et al. Insights into DNA polymerization mechanisms from structure and function analysis of HIV-1 reverse transcriptase. Biochemistry 34, 5351–5363 (1995).

    Article  CAS  PubMed  Google Scholar 

  26. Cheetham, G.M., Jeruzalmi, D. & Steitz, T.A. Transcription regulation, initiation, and 'DNA scrunching' by T7 RNA polymerase. Cold Spring Harb. Symp. Quant. Biol. 63, 263–267 (1998).

    Article  CAS  PubMed  Google Scholar 

  27. Kapanidis, A.N. et al. Initial transcription by RNA polymerase proceeds through a DNA-scrunching mechanism. Science 314, 1144–1147 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Brieba, L.G. & Sousa, R. T7 promoter release mediated by DNA scrunching. EMBO J. 20, 6826–6835 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zaug, A.J., Podell, E.R. & Cech, T.R. Mutation in TERT separates processivity from anchor-site function. Nat. Struct. Mol. Biol. 15, 870–872 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Förstemann, K. & Lingner, J. Telomerase limits the extent of base pairing between template RNA and telomeric DNA. EMBO Rep. 6, 361–366 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Hammond, P.W. & Cech, T.R. Euplotes telomerase: evidence for limited base-pairing during primer elongation and dGTP as an effector of translocation. Biochemistry 37, 5162–5172 (1998).

    Article  CAS  PubMed  Google Scholar 

  32. Zaug, A.J. & Cech, T.R. Analysis of the structure of Tetrahymena nuclear RNAs in vivo: telomerase RNA, the self-splicing rRNA intron, and U2 snRNA. RNA 1, 363–374 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Akiyama, B.M. & Stone, M.D. Assembly of complex RNAs by splinted ligation. Methods Enzymol. 469, 27–46 (2009).

    Article  CAS  PubMed  Google Scholar 

  34. Bryan, T.M., Goodrich, K.J. & Cech, T.R. A mutant of Tetrahymena telomerase reverse transcriptase with increased processivity. J. Biol. Chem. 275, 24199–24207 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Ha, T. et al. Single-molecule fluorescence spectroscopy of enzyme conformational dynamics and cleavage mechanism. Proc. Natl. Acad. Sci. USA 96, 893–898 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Roy, R., Hohng, S. & Ha, T. A practical guide to single-molecule FRET. Nat. Methods 5, 507–516 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was partially supported by a Jane Coffin Childs Memorial Fund for Medical Research postdoctoral fellowship to A.J.B., US National Institutes of Health grant GM095850 to M.D.S. and US National Institutes of Health training grant T32 GM8646 to B.M.A.

Author information

Authors and Affiliations

Authors

Contributions

A.J.B. conducted all biochemical experiments; A.J.B. and T.R.C. designed and analyzed biochemical experiments. B.M.A. conducted smFRET experiments; B.M.A. and M.D.S. designed and analyzed smFRET experiments. All authors participated in writing the manuscript.

Corresponding author

Correspondence to Thomas R Cech.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 (PDF 5024 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berman, A., Akiyama, B., Stone, M. et al. The RNA accordion model for template positioning by telomerase RNA during telomeric DNA synthesis. Nat Struct Mol Biol 18, 1371–1375 (2011). https://doi.org/10.1038/nsmb.2174

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2174

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing