Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The E3 ubiquitin ligase Rnf8 stabilizes Tpp1 to promote telomere end protection

Abstract

The mammalian shelterin component TPP1 has essential roles in telomere maintenance and, together with POT1, is required for the repression of DNA damage signaling at telomeres. Here we show that in Mus musculus, the E3 ubiquitin ligase Rnf8 localizes to uncapped telomeres and promotes the accumulation of DNA damage proteins 53Bp1 and γ-H2ax. In the absence of Rnf8, Tpp1 is unstable, resulting in telomere shortening and chromosome fusions through the alternative nonhomologous end-joining (A-NHEJ) repair pathway. The Rnf8 RING-finger domain is essential for Tpp1 stability and retention at telomeres. Rnf8 physically interacts with Tpp1 to generate Ubc13-dependent Lys63 polyubiquitin chains that stabilize Tpp1 at telomeres. The conserved Tpp1 residue Lys233 is important for Rnf8-mediated Tpp1 ubiquitylation and localization to telomeres. Thus, Tpp1 is a newly identified substrate for Rnf8, indicating a previously unrecognized role for Rnf8 in telomere end protection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Rnf8 is required for the accumulation of DNA damage response factors to dysfunctional telomeres.
Figure 2: Rnf8 is required to protect telomere ends from chromosome aberrations.
Figure 3: Rnf8 is required for the accumulation of the Tpp1–Pot1a-b complex at telomeres.
Figure 4: Rnf8 is required for preventing Tpp1 from proteasome-mediated degradation.
Figure 5: Rnf8 physically interacts with and ubiquitylates Tpp1.
Figure 6: Lys233 is required for TPP1 ubiquitylation, telomere localization and genome stability.

Similar content being viewed by others

References

  1. de Lange, T. How shelterin solves the telomere end-protection problem. Cold Spring Harb. Symp. Quant. Biol. 75, 167–177 (2010).

    Article  CAS  Google Scholar 

  2. Wang, F. et al. The POT1–TPP1 telomere complex is a telomerase processivity factor. Nature 445, 506–510 (2007).

    Article  CAS  Google Scholar 

  3. Xin, H. et al. TPP1 is a homologue of ciliate TEBP-beta and interacts with POT1 to recruit telomerase. Nature 445, 559–562 (2007).

    Article  CAS  Google Scholar 

  4. Deng, Y., Guo, X., Ferguson, D.O. & Chang, S. Multiple roles for MRE11 at uncapped telomeres. Nature 460, 914–918 (2009).

    Article  CAS  Google Scholar 

  5. Denchi, E.L. & de Lange, T. Protection of telomeres through independent control of ATM and ATR by TRF2 and POT1. Nature 448, 1068–1071 (2007).

    Article  CAS  Google Scholar 

  6. Guo, X. et al. Dysfunctional telomeres activate an ATM-ATR-dependent DNA damage response to suppress tumorigenesis. EMBO J. 26, 4709–4719 (2007).

    Article  CAS  Google Scholar 

  7. Rai, R. et al. The function of classical and alternative non-homologous end-joining pathways in the fusion of dysfunctional telomeres. EMBO J. 29, 2598–2610 (2010).

    Article  CAS  Google Scholar 

  8. Guirouilh-Barbat, J., Rass, E., Plo, I., Bertrand, P. & Lopez, B.S. Defects in XRCC4 and KU80 differentially affect the joining of distal nonhomologous ends. Proc. Natl. Acad. Sci. USA 104, 20902–20907 (2007).

    Article  CAS  Google Scholar 

  9. Weinstock, D.M., Brunet, E. & Jasin, M. Formation of NHEJ-derived reciprocal chromosomal translocations does not require Ku70. Nat. Cell Biol. 9, 978–981 (2007).

    Article  CAS  Google Scholar 

  10. Harper, J.W. & Elledge, S.J. The DNA damage response: ten years after. Mol. Cell 28, 739–745 (2007).

    Article  CAS  Google Scholar 

  11. Al-Hakim, A. et al. The ubiquitous role of ubiquitin in the DNA damage response. DNA Repair (Amst.) 9, 1229–1240 (2010).

    Article  CAS  Google Scholar 

  12. Wang, B. & Elledge, S.J. Ubc13/Rnf8 ubiquitin ligases control foci formation of the Rap80/Abraxas/Brca1/Brcc36 complex in response to DNA damage. Proc. Natl. Acad. Sci. USA 104, 20759–20763 (2007).

    Article  CAS  Google Scholar 

  13. Mailand, N. et al. RNF8 ubiquitylates histones at DNA double-strand breaks and promotes assembly of repair proteins. Cell 131, 887–900 (2007).

    Article  CAS  Google Scholar 

  14. Kolas, N.K. et al. Orchestration of the DNA-damage response by the RNF8 ubiquitin ligase. Science 318, 1637–1640 (2007).

    Article  CAS  Google Scholar 

  15. Huen, M.S. et al. RNF8 transduces the DNA-damage signal via histone ubiquitylation and checkpoint protein assembly. Cell 131, 901–914 (2007).

    Article  CAS  Google Scholar 

  16. Plans, V. et al. The RING finger protein RNF8 recruits UBC13 for lysine 63-based self polyubiquitylation. J. Cell. Biochem. 97, 572–582 (2006).

    Article  CAS  Google Scholar 

  17. Peuscher, M.H. & Jacobs, J.J. DNA-damage response and repair activities at uncapped telomeres depend on RNF8. Nat. Cell Biol. 13, 1139–1145 (2011).

    Article  CAS  Google Scholar 

  18. Ito, K. et al. N-Terminally extended human ubiquitin-conjugating enzymes (E2s) mediate the ubiquitination of RING-finger proteins, ARA54 and RNF8. Eur. J. Biochem. 268, 2725–2732 (2001).

    Article  CAS  Google Scholar 

  19. O'Connor, M.S., Safari, A., Xin, H., Liu, D. & Songyang, Z. A critical role for TPP1 and TIN2 interaction in high-order telomeric complex assembly. Proc. Natl. Acad. Sci. USA 103, 11874–11879 (2006).

    Article  CAS  Google Scholar 

  20. Jin, J. et al. SCFbeta-TRCP links Chk1 signaling to degradation of the Cdc25A protein phosphatase. Genes Dev. 17, 3062–3074 (2003).

    Article  CAS  Google Scholar 

  21. Jin, J., Li, X., Gygi, S.P. & Harper, J.W. Dual E1 activation systems for ubiquitin differentially regulate E2 enzyme charging. Nature 447, 1135–1138 (2007).

    Article  CAS  Google Scholar 

  22. Centore, R.C. et al. CRL4(Cdt2)-mediated destruction of the histone methyltransferase Set8 prevents premature chromatin compaction in S phase. Mol. Cell 40, 22–33 (2010).

    Article  CAS  Google Scholar 

  23. Peng, J. et al. A proteomics approach to understanding protein ubiquitination. Nat. Biotechnol. 21, 921–926 (2003).

    Article  CAS  Google Scholar 

  24. Newton, K. et al. Ubiquitin chain editing revealed by polyubiquitin linkage-specific antibodies. Cell 134, 668–678 (2008).

    Article  CAS  Google Scholar 

  25. Lok, G.T., Dong, S.S., Thomson, T.M. & Huen, M.S. Differential regulation of RNF8-mediated Lys48-and Lys63 based poly-ubiquitylation. Nucleic Acids Res. published online, doi:10.1093/nar/gkr655 (16 September 2011).

  26. Sobhian, B. et al. RAP80 targets BRCA1 to specific ubiquitin structures at DNA damage sites. Science 316, 1198–1202 (2007).

    Article  CAS  Google Scholar 

  27. Zhao, G.Y. et al. A critical role for the ubiquitin-conjugating enzyme Ubc13 in initiating homologous recombination. Mol. Cell 25, 663–675 (2007).

    Article  CAS  Google Scholar 

  28. Hockemeyer, D. et al. Telomere protection by mammalian Pot1 requires interaction with Tpp1. Nat. Struct. Mol. Biol. 14, 754–761 (2007).

    Article  CAS  Google Scholar 

  29. Kibe, T., Osawa, G.A., Keegan, C.E. & de Lange, T. Telomere protection by TPP1 is mediated by POT1a and POT1b. Mol. Cell. Biol. 30, 1059–1066 (2010).

    Article  CAS  Google Scholar 

  30. Huang, T.T. & D'Andrea, A.D. Regulation of DNA repair by ubiquitylation. Nat. Rev. Mol. Cell Biol. 7, 323–334 (2006).

    Article  CAS  Google Scholar 

  31. Chang, W., Dynek, J.N. & Smith, S. TRF1 is degraded by ubiquitin-mediated proteolysis after release from telomeres. Genes Dev. 17, 1328–1333 (2003).

    Article  CAS  Google Scholar 

  32. Atanassov, B.S. et al. Gcn5 and SAGA regulate shelterin protein turnover and telomere maintenance. Mol. Cell 35, 352–364 (2009).

    Article  CAS  Google Scholar 

  33. Zeng, Z. et al. Structural basis of selective ubiquitination of TRF1 by SCFFbx4. Dev. Cell 18, 214–225 (2010).

    Article  CAS  Google Scholar 

  34. Her, Y.R. & Chung, I.K. Ubiquitin ligase RLIM modulates telomere length homeostasis through a proteolysis of TRF1. J. Biol. Chem. 284, 8557–8566 (2009).

    Article  CAS  Google Scholar 

  35. Lee, T.H., Perrem, K., Harper, J.W., Lu, K.P. & Zhou, X.Z. The F-box protein FBX4 targets PIN2/TRF1 for ubiquitin-mediated degradation and regulates telomere maintenance. J. Biol. Chem. 281, 759–768 (2006).

    Article  CAS  Google Scholar 

  36. Fujita, K. et al. Positive feedback between p53 and TRF2 during telomere-damage signalling and cellular senescence. Nat. Cell Biol. 12, 1205–1212 (2010).

    Article  CAS  Google Scholar 

  37. Flynn, R.L. et al. TERRA and hnRNPA1 orchestrate an RPA-to-POT1 switch on telomeric single-stranded DNA. Nature 471, 532–536 (2011).

    Article  CAS  Google Scholar 

  38. Wu, L. et al. Pot1 deficiency initiates DNA damage checkpoint activation and aberrant homologous recombination at telomeres. Cell 126, 49–62 (2006).

    Article  CAS  Google Scholar 

  39. Hoeller, D., Hecker, C.M. & Dikic, I. Ubiquitin and ubiquitin-like proteins in cancer pathogenesis. Nat. Rev. Cancer 6, 776–788 (2006).

    Article  CAS  Google Scholar 

  40. Bernassola, F., Karin, M., Ciechanover, A. & Melino, G. The HECT family of E3 ubiquitin ligases: multiple players in cancer development. Cancer Cell 14, 10–21 (2008).

    Article  CAS  Google Scholar 

  41. Nakayama, K.I. & Nakayama, K. Ubiquitin ligases: cell-cycle control and cancer. Nat. Rev. Cancer 6, 369–381 (2006).

    Article  CAS  Google Scholar 

  42. Li, L. et al. Rnf8 deficiency impairs class switch recombination, spermatogenesis, and genomic integrity and predisposes for cancer. J. Exp. Med. 207, 983–997 (2010).

    Article  CAS  Google Scholar 

  43. Augereau, A. et al. Telomeric damage in early stage of chronic lymphocytic leukemia correlates with shelterin dysregulation. Blood 118, 1316–1322 (2011).

    Article  CAS  Google Scholar 

  44. Else, T. et al. Genetic p53 deficiency partially rescues the adrenocortical dysplasia phenotype at the expense of increased tumorigenesis. Cancer Cell 15, 465–476 (2009).

    Article  CAS  Google Scholar 

  45. Morales, J.C. et al. Role for the BRCA1 C-terminal repeats (BRCT) protein 53BP1 in maintaining genomic stability. J. Biol. Chem. 278, 14971–14977 (2003).

    Article  CAS  Google Scholar 

  46. Tevethia, M.J. & Ozer, H.L. SV40-mediated immortalization. Methods Mol. Biol. 165, 185–199 (2001).

    CAS  PubMed  Google Scholar 

  47. Rai, R. & Chang, S. Probing the telomere damage response. Methods Mol. Biol. 735, 145–150 (2011).

    Article  CAS  Google Scholar 

  48. Multani, A.S. & Chang, S. Cytogenetic analysis of telomere dysfunction. Methods Mol. Biol. 735, 139–143 (2011).

    Article  CAS  Google Scholar 

  49. Campanero, M.R. & Flemington, E.K. Regulation of E2F through ubiquitin-proteasome-dependent degradation: stabilization by the pRB tumor suppressor protein. Proc. Natl. Acad. Sci. USA 94, 2221–2226 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to J. Karlseder (Salk Institute) for providing anti-mouse Trf1 and Trf2 antibodies, to Z. Songyang (Baylor College of Medicine) for providing anti-human TPP1 antibody and TPP1 cDNA constructs and to D. Durocher (Samuel Lunenfeld Research Institute) for providing mouse Rnf8 and Rnf8 mutant cDNAs. The linkage-specific antibodies to Lys63 and Lys48 ubiquitin conjugates were provided by V.M. Dixit (Genentech), and pLPC-hRAP1 was a gift from M. Lei (University of Michigan Medical School). We would like to thank A. Multani (MD Anderson Cancer Center) for help with chromosome analysis and I. Patanam for technical support. S.C. acknowledges generous financial support from the National Cancer Institute (RO1 CA129037) and the Michael and Betty Kadoorie Cancer Genetic Research Program. J.J. is a Pew Scholar and is supported by a grant (AU-1711) from the Welch Foundation.

Author information

Authors and Affiliations

Authors

Contributions

R.R., J.J. and S.C. conceived the project and designed the experiments. R.R., J.J., J.-M.L. and H.Z. conducted the experiments and generated data for the figures. Y.D. generated anti-mouse Tpp1 antibody. J.C. provided the Rnf8−/− mice and anti-human RNF8 antibody. M.S.-Y.H. and G.T.-M.L. provided human RNF8 cDNAs and shared unpublished results. R.R., J.J. and S.C. analyzed and interpreted the data. R.R. and S.C. created the figures and wrote the paper.

Corresponding author

Correspondence to Sandy Chang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 (PDF 1394 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rai, R., Li, JM., Zheng, H. et al. The E3 ubiquitin ligase Rnf8 stabilizes Tpp1 to promote telomere end protection. Nat Struct Mol Biol 18, 1400–1407 (2011). https://doi.org/10.1038/nsmb.2172

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2172

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing