Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mechanism of actin filament nucleation by the bacterial effector VopL

Abstract

Vibrio parahaemolyticus protein L (VopL) is an actin nucleation factor that induces stress fibers when injected into eukaryotic host cells. VopL contains three N-terminal Wiskott-Aldrich homology 2 (WH2) motifs and a unique VopL C-terminal domain (VCD). We describe crystallographic and biochemical analyses of filament nucleation by VopL. The WH2 element of VopL does not nucleate on its own and requires the VCD for activity. The VCD forms a U-shaped dimer in the crystal, stabilized by a terminal coiled coil. Dimerization of the WH2 motifs contributes strongly to nucleation activity, as do contacts of the VCD to actin. Our data lead to a model in which VopL stabilizes primarily lateral (short-pitch) contacts between actin monomers to create the base of a two-stranded filament. Stabilization of lateral contacts may be a common feature of actin filament nucleation by WH2-based factors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Both the WH2 motifs and VCD contribute to actin nucleation by VopL.
Figure 2: Dimerization is necessary for actin nucleation by the VopL WH2 motifs.
Figure 3: Structure of the VCD dimer.
Figure 4: The VCD contributes to actin assembly activity by dimerization and contacts to actin.
Figure 5: Increasing the linker between WH2c and the VCD increases actin assembly activity.
Figure 6: Model for a minimal actin nucleus assembled by VopL.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

References

  1. Le Clainche, C. & Carlier, M.F. Regulation of actin assembly associated with protrusion and adhesion in cell migration. Physiol. Rev. 88, 489–513 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Pollard, T.D. & Borisy, G.G. Cellular motility driven by assembly and disassembly of actin filaments. Cell 112, 453–465 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Chhabra, E.S. & Higgs, H.N. The many faces of actin: matching assembly factors with cellular structures. Nat. Cell Biol. 9, 1110–1121 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Sept, D. & McCammon, J.A. Thermodynamics and kinetics of actin filament nucleation. Biophys. J. 81, 667–674 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Pruyne, D. et al. Role of formins in actin assembly: nucleation and barbed-end association. Science 297, 612–615 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Machesky, L.M., Atkinson, S.J., Ampe, C., Vandekerckhove, J. & Pollard, T.D. Purification of a cortical complex containing two unconventional actins from Acanthamoeba by affinity chromatography on profilin-agarose. J. Cell Biol. 127, 107–115 (1994).

    Article  CAS  PubMed  Google Scholar 

  7. Quinlan, M.E., Heuser, J.E., Kerkhoff, E. & Mullins, R.D. Drosophila Spire is an actin nucleation factor. Nature 433, 382–388 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Ahuja, R. et al. Cordon-bleu is an actin nucleation factor and controls neuronal morphology. Cell 131, 337–350 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chereau, D. et al. Leiomodin is an actin filament nucleator in muscle cells. Science 320, 239–243 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chesarone, M.A. & Goode, B.L. Actin nucleation and elongation factors: mechanisms and interplay. Curr. Opin. Cell Biol. 21, 28–37 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Renault, L., Bugyi, B. & Carlier, M.F. Spire and Cordon-bleu: multifunctional regulators of actin dynamics. Trends Cell Biol. 18, 494–504 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Goley, E.D. & Welch, M.D. The ARP2/3 complex: an actin nucleator comes of age. Nat. Rev. Mol. Cell Biol. 7, 713–726 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Pollard, T.D. Regulation of actin filament assembly by Arp2/3 complex and formins. Annu. Rev. Biophys. Biomol. Struct. 36, 451–477 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Robinson, R.C. et al. Crystal structure of Arp2/3 complex. Science 294, 1679–1684 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Otomo, T. et al. Structural basis of actin filament nucleation and processive capping by a formin homology 2 domain. Nature 433, 488–494 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Xu, Y. et al. Crystal structures of a Formin Homology-2 domain reveal a tethered dimer architecture. Cell 116, 711–723 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Shemesh, T., Otomo, T., Rosen, M.K., Bershadsky, A.D. & Kozlov, M.M. A novel mechanism of actin filament processive capping by formin: solution of the rotation paradox. J. Cell Biol. 170, 889–893 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Vavylonis, D., Kovar, D.R., O'Shaughnessy, B. & Pollard, T.D. Model of formin-associated actin filament elongation. Mol. Cell 21, 455–466 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dominguez, R. Structural insights into de novo actin polymerization. Curr. Opin. Struct. Biol. 20, 217–225 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ghosh, P. Process of protein transport by the type III secretion system. Microbiol. Mol. Biol. Rev. 68, 771–795 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Orth, K. Function of the Yersinia effector YopJ. Curr. Opin. Microbiol. 5, 38–43 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Aktories, K. & Barbieri, J.T. Bacterial cytotoxins: targeting eukaryotic switches. Nat. Rev. Microbiol. 3, 397–410 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Cheng, H.C., Skehan, B.M., Campellone, K.G., Leong, J.M. & Rosen, M.K. Structural mechanism of WASP activation by the enterohaemorrhagic E. coli effector EspF(U). Nature 454, 1009–1013 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Padrick, S.B. et al. Hierarchical regulation of WASP/WAVE proteins. Mol. Cell 32, 426–438 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Campellone, K.G., Robbins, D. & Leong, J.M. EspFU is a translocated EHEC effector that interacts with Tir and N-WASP and promotes Nck-independent actin assembly. Dev. Cell 7, 217–228 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Sallee, N.A. et al. The pathogen protein EspF(U) hijacks actin polymerization using mimicry and multivalency. Nature 454, 1005–1008 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Suzuki, T. et al. Neural Wiskott-Aldrich syndrome protein (N-WASP) is the specific ligand for Shigella VirG among the WASP family and determines the host cell type allowing actin-based spreading. Cell Microbiol. 4, 223–233 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Fradelizi, J. et al. ActA and human zyxin harbour Arp2/3-independent actin-polymerization activity. Nat. Cell Biol. 3, 699–707 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Tripathi, R. et al. VopF, a type III effector protein from a non-O1, non-O139 Vibrio cholerae strain, demonstrates toxicity in a Saccharomyces cerevisiae model. J. Med. Microbiol. 59, 17–24 (2010).

    Article  CAS  PubMed  Google Scholar 

  30. Liverman, A.D. et al. Arp2/3-independent assembly of actin by Vibrio type III effector VopL. Proc. Natl. Acad. Sci. USA 104, 17117–17122 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Haglund, C.M., Choe, J.E., Skau, C.T., Kovar, D.R. & Welch, M.D. Rickettsia Sca2 is a bacterial formin-like mediator of actin-based motility. Nat. Cell Biol. 12, 1057–1063 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tam, V.C., Serruto, D., Dziejman, M., Brieher, W. & Mekalanos, J.J. A type III secretion system in Vibrio cholerae translocates a formin/spire hybrid-like actin nucleator to promote intestinal colonization. Cell Host Microbe 1, 95–107 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Jewett, T.J., Fischer, E.R., Mead, D.J. & Hackstadt, T. Chlamydial TARP is a bacterial nucleator of actin. Proc. Natl. Acad. Sci. USA 103, 15599–15604 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tam, V.C. et al. Functional analysis of VopF activity required for colonization in Vibrio cholerae. MBio 1, e00289–10 (2010).

  35. Chereau, D. et al. Actin-bound structures of Wiskott-Aldrich syndrome protein (WASP)-homology domain 2 and the implications for filament assembly. Proc. Natl. Acad. Sci. USA 102, 16644–16649 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Co, C., Wong, D.T., Gierke, S., Chang, V. & Taunton, J. Mechanism of actin network attachment to moving membranes: barbed end capture by N-WASP WH2 domains. Cell 128, 901–913 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Namgoong, S.B.M., et al. Mechanism of actin filament nucleation by Vibrio VopL and implications for tandem W domain nucleation. Nat. Struct. Mol. Biol. (2011).

  38. Krissinel, E. & Henrick, K. Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 372, 774–797 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Holmes, K.C., Popp, D., Gebhard, W. & Kabsch, W. Atomic model of the actin filament. Nature 347, 44–49 (1990).

    Article  CAS  PubMed  Google Scholar 

  40. Quinlan, M.E., Hilgert, S., Bedrossian, A., Mullins, R.D. & Kerkhoff, E. Regulatory interactions between two actin nucleators, Spire and Cappuccino. J. Cell Biol. 179, 117–128 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Leung, D.W., Morgan, D.M. & Rosen, M.K. Biochemical properties and inhibitors of (N-)WASP. Methods Enzymol. 406, 281–296 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Minor, W., Cymborowski, M., Otwinowski, Z. & Chruszcz, M. HKL-3000: the integration of data reduction and structure solution–from diffraction images to an initial model in minutes. Acta Crystallogr. D Biol. Crystallogr. 62, 859–866 (2006).

    Article  PubMed  Google Scholar 

  43. Schneider, T.R. & Sheldrick, G.M. Substructure solution with SHELXD. Acta Crystallogr. D Biol. Crystallogr. 58, 1772–1779 (2002).

    Article  PubMed  Google Scholar 

  44. Otwinowski, Z. Isomorphous replacement and anomalous scattering. in Proceedings of the CCP4 study weekend (eds. Sawyer, L., Isaacs, N. & Bailey, S.) 80–86 (Daresbury Laboratory, Warrington, UK, 1991).

  45. Wilson, R. et al. 2.2 Mb of contiguous nucleotide sequence from chromosome III of C. elegans. Nature 368, 32–38 (1994).

    Article  CAS  PubMed  Google Scholar 

  46. Cowtan, K. The Buccaneer software for automated model building. 1. Tracing protein chains. Acta Crystallogr. D Biol. Crystallogr. 62, 1002–1011 (2006).

    Article  PubMed  Google Scholar 

  47. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  PubMed  Google Scholar 

  48. McCoy, A.J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Adams, P.D. et al. PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr. D Biol. Crystallogr. 58, 1948–1954 (2002).

    Article  PubMed  Google Scholar 

  50. Davis, I.W., Murray, L.W., Richardson, J.S. & Richardson, D.C. MOLPROBITY: structure validation and all-atom contact analysis for nucleic acids and their complexes. Nucleic Acids Res. 32, W615–W619 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank J. Zahm of the University of Texas Southwestern Medical Center (UT Southwestern) for the data in Supplementary Figure 7b and for discussion; Z. Otwinowski, D. Borek (UT Southwestern) and participants in the 2010 CCP4 workshop, especially P. Afonine (Lawrence Berkeley National Laboratory), G. Murshudov (The University of York) and B. Lohkamp (Karolinska Institute), for technical assistance with protein structure determination; F. Correa (UT Southwestern) for assistance with MALLS experiments and data analysis; and K. Orth, Z. Chen and S. Padrick for discussion. Results shown in this report are derived from work conducted at Argonne National Laboratory, Structural Biology Center at the Advanced Photon Source. Argonne is operated by UChicago Argonne for the US Department of Energy, Office of Biological and Environmental Research, under contract DE-AC02-06CH11357. Work was supported by funds from the Howard Hughes Medical Institute and a Welch Foundation grant to M.K.R. (I-1544).

Author information

Authors and Affiliations

Authors

Contributions

M.K.R. conceived the project; B.Y. did the work; C.A.B. and D.R.T. assisted with X-ray diffraction data collection and structure determination. H.-C.C. assisted with designing and making the VopL constructs; M.K.R. and B.Y. analyzed the data and wrote the paper.

Corresponding author

Correspondence to Michael K Rosen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 (PDF 450 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, B., Cheng, HC., Brautigam, C. et al. Mechanism of actin filament nucleation by the bacterial effector VopL. Nat Struct Mol Biol 18, 1068–1074 (2011). https://doi.org/10.1038/nsmb.2110

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2110

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing