Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mechanism of ubiquitylation by dimeric RING ligase RNF4

Abstract

Mammalian RNF4 is a dimeric RING ubiquitin E3 ligase that ubiquitylates poly-SUMOylated proteins. We found that RNF4 bound ubiquitin-charged UbcH5a tightly but free UbcH5a weakly. To provide insight into the mechanism of RING-mediated ubiquitylation, we docked the UbcH5~ubiquitin thioester onto the RNF4 RING structure. This revealed that with E2 bound to one monomer of RNF4, the thioester-linked ubiquitin could reach across the dimer to engage the other monomer. In this model, the 'Ile44 hydrophobic patch' of ubiquitin is predicted to engage a conserved tyrosine located at the dimer interface of the RING, and mutation of these residues blocked ubiquitylation activity. Thus, dimeric RING ligases are not simply inert scaffolds that bring substrate and E2-loaded ubiquitin into close proximity. Instead, they facilitate ubiquitin transfer by preferentially binding the E2~ubiquitin thioester across the dimer and activating the thioester bond for catalysis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of dimeric RING domain of RNF4.
Figure 2: Ubiquitylation by RNF4 can proceed both in cis and in trans.
Figure 3: RNF4 preferentially binds ubiquitin-loaded E2 and activates the bond between E2 and ubiquitin.
Figure 4: The Ile44-centered hydrophobic patch on ubiquitin is required for RNF4-mediated ubiquitylation.
Figure 5: Tyr193, a residue located at the dimer interface of the RNF4 RING domain, is required for activation of the thioester bond in the E2~ubiquitin thioester.
Figure 6: A linear fusion of full-length RNF4 and the RNF4 RING domain shows that E2-binding site in one RING domain and Tyr193 in the other RING are both required for ubiquitylation activity.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

References

  1. Dye, B.T. & Schulman, B.A. Structural mechanisms underlying posttranslational modification by ubiquitin-like proteins. Annu. Rev. Biophys. Biomol. Struct. 36, 131–150 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Pickart, C.M. & Eddins, M.J. Ubiquitin: structures, functions, mechanisms. Biochim. Biophys. Acta 1695, 55–72 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Deshaies, R.J. & Joazeiro, C.A. RING domain E3 ubiquitin ligases. Annu. Rev. Biochem. 78, 399–434 (2009).

    Article  CAS  PubMed  Google Scholar 

  4. Hay, R.T. SUMO: a history of modification. Mol. Cell 18, 1–12 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Perry, J.J., Tainer, J.A. & Boddy, M.N. A SIM-ultaneous role for SUMO and ubiquitin. Trends Biochem. Sci. 33, 201–208 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. Kosoy, A., Calonge, T.M., Outwin, E.A. & O'Connell, M.J. Fission yeast Rnf4 homologs are required for DNA repair. J. Biol. Chem. 282, 20388–20394 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Prudden, J. et al. SUMO-targeted ubiquitin ligases in genome stability. EMBO J. 26, 4089–4101 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sun, H., Leverson, J.D. & Hunter, T. Conserved function of RNF4 family proteins in eukaryotes: targeting a ubiquitin ligase to SUMOylated proteins. EMBO J. 26, 4102–4112 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Uzunova, K. et al. Ubiquitin-dependent proteolytic control of SUMO conjugates. J. Biol. Chem. 282, 34167–34175 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Xie, Y. et al. The yeast Hex3.Slx8 heterodimer is a ubiquitin ligase stimulated by substrate sumoylation. J. Biol. Chem. 282, 34176–34184 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Häkli, M., Lorick, K.L., Weissman, A.M., Janne, O.A. & Palvimo, J.J. Transcriptional coregulator SNURF (RNF4) possesses ubiquitin E3 ligase activity. FEBS Lett. 560, 56–62 (2004).

    Article  PubMed  Google Scholar 

  12. Lallemand-Breitenbach, V. et al. Arsenic degrades PML or PML-RARα through a SUMO-triggered RNF4/ubiquitin-mediated pathway. Nat. Cell Biol. 10, 547–555 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. Tatham, M.H. et al. RNF4 is a poly-SUMO-specific E3 ubiquitin ligase required for arsenic-induced PML degradation. Nat. Cell Biol. 10, 538–546 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Song, J., Durrin, L.K., Wilkinson, T.A., Krontiris, T.G. & Chen, Y. Identification of a SUMO-binding motif that recognizes SUMO-modified proteins. Proc. Natl. Acad. Sci. USA 101, 14373–14378 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hecker, C.M., Rabiller, M., Haglund, K., Bayer, P. & Dikic, I. Specification of SUMO1- and SUMO2-interacting motifs. J. Biol. Chem. 281, 16117–16127 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Song, J., Zhang, Z., Hu, W. & Chen, Y. Small ubiquitin-like modifier (SUMO) recognition of a SUMO binding motif: a reversal of the bound orientation. J. Biol. Chem. 280, 40122–40129 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Liew, C.W., Sun, H., Hunter, T. & Day, C.L. RING domain dimerization is essential for RNF4 function. Biochem. J. 431, 23–29 (2010).

    Article  CAS  PubMed  Google Scholar 

  18. Mace, P.D. et al. Structures of the cIAP2 RING domain reveal conformational changes associated with ubiquitin-conjugating enzyme (E2) recruitment. J. Biol. Chem. 283, 31633–31640 (2008).

    Article  CAS  PubMed  Google Scholar 

  19. Linke, K. et al. Structure of the MDM2/MDMX RING domain heterodimer reveals dimerization is required for their ubiquitylation in trans. Cell Death Differ. 15, 841–848 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. Vander Kooi, C.W. et al. The Prp19 U-box crystal structure suggests a common dimeric architecture for a class of oligomeric E3 ubiquitin ligases. Biochemistry 45, 121–130 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Yin, Q. et al. E2 interaction and dimerization in the crystal structure of TRAF6. Nat. Struct. Mol. Biol. 16, 658–666 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wu, P.Y. et al. A conserved catalytic residue in the ubiquitin-conjugating enzyme family. EMBO J. 22, 5241–5250 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sakata, E. et al. Crystal structure of UbcH5b~ubiquitin intermediate: insight into the formation of the self-assembled E2~Ub conjugates. Structure 18, 138–147 (2010).

    Article  CAS  PubMed  Google Scholar 

  24. Dikic, I., Wakatsuki, S. & Walters, K.J. Ubiquitin-binding domains—from structures to functions. Nat. Rev. Mol. Cell Biol. 10, 659–671 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lee, S. et al. Structural basis for ubiquitin recognition and autoubiquitination by Rabex-5. Nat. Struct. Mol. Biol. 13, 264–271 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Penengo, L. et al. Crystal structure of the ubiquitin binding domains of rabex-5 reveals two modes of interaction with ubiquitin. Cell 124, 1183–1195 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Rahighi, S. et al. Specific recognition of linear ubiquitin chains by NEMO is important for NF-κB activation. Cell 136, 1098–1109 (2009).

    Article  CAS  PubMed  Google Scholar 

  28. Mastrandrea, L.D., Kasperek, E.M., Niles, E.G. & Pickart, C.M. Core domain mutation (S86Y) selectively inactivates polyubiquitin chain synthesis catalyzed by E2–25K. Biochemistry 37, 9784–9792 (1998).

    Article  CAS  PubMed  Google Scholar 

  29. Brzovic, P.S., Lissounov, A., Christensen, D.E., Hoyt, D.W. & Klevit, R.E.A. UbcH5/ubiquitin noncovalent complex is required for processive BRCA1-directed ubiquitination. Mol. Cell 21, 873–880 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Christensen, D.E., Brzovic, P.S. & Klevit, R.E. E2-BRCA1 RING interactions dictate synthesis of mono- or specific polyubiquitin chain linkages. Nat. Struct. Mol. Biol. 14, 941–948 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Kleiger, G., Saha, A., Lewis, S., Kuhlman, B. & Deshaies, R.J. Rapid E2–E3 assembly and disassembly enable processive ubiquitylation of cullin-RING ubiquitin ligase substrates. Cell 139, 957–968 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pierce, N.W., Kleiger, G., Shan, S.O. & Deshaies, R.J. Detection of sequential polyubiquitylation on a millisecond timescale. Nature 462, 615–619 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Brzovic, P.S., Rajagopal, P., Hoyt, D.W., King, M.C. & Klevit, R.E. Structure of a BRCA1-BARD1 heterodimeric RING-RING complex. Nat. Struct. Biol. 8, 833–837 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Buchwald, G. et al. Structure and E3-ligase activity of the Ring-Ring complex of Polycomb proteins Bmi1 and Ring1b. EMBO J. 25, 2465–2474 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Xu, Z. et al. Interactions between the quality control ubiquitin ligase CHIP and ubiquitin conjugating enzymes. BMC Struct. Biol. 8, 26 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Zhang, M. et al. Chaperoned ubiquitylation—crystal structures of the CHIP U box E3 ubiquitin ligase and a CHIP-Ubc13-Uev1a complex. Mol. Cell 20, 525–538 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. Kamadurai, H.B. et al. Insights into ubiquitin transfer cascades from a structure of a UbcH5B~ubiquitin-HECT(NEDD4L) complex. Mol. Cell 36, 1095–1102 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Levin, I. et al. Identification of an unconventional E3 binding surface on the UbcH5~Ub conjugate recognized by a pathogenic bacterial E3 ligase. Proc. Natl. Acad. Sci. USA 107, 2848–2853 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Pruneda, J.N., Stoll, K.E., Bolton, L.J., Brzovic, P.S. & Klevit, R.E. Ubiquitin in motion: structural studies of the ubiquitin-conjugating enzyme~ubiquitin conjugate. Biochemistry 50, 1624–1633 (2011).

    Article  CAS  PubMed  Google Scholar 

  40. Wickliffe, K.E., Lorenz, S., Wemmer, D.E., Kuriyan, J. & Rape, M. The mechanism of linkage-specific ubiquitin chain elongation by a single-subunit E2. Cell 144, 769–781 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Saha, A., Lewis, S., Kleiger, G., Kuhlman, B. & Deshaies, R.J. Essential role for ubiquitin-ubiquitin-conjugating enzyme interaction in ubiquitin discharge from Cdc34 to substrate. Mol. Cell 42, 75–83 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Martin, S.F., Tatham, M.H., Hay, R.T. & Samuel, I.D. Quantitative analysis of multi-protein interactions using FRET: application to the SUMO pathway. Protein Sci. 17, 777–784 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Martin, S.F., Hattersley, N., Samuel, I.D., Hay, R.T. & Tatham, M.H. A fluorescence-resonance-energy-transfer-based protease activity assay and its use to monitor paralog-specific small ubiquitin-like modifier processing. Anal. Biochem. 363, 83–90 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  PubMed  Google Scholar 

  45. Sheldrick, G.M. A short history of SHELX. Acta Crystallogr. A 64, 112–122 (2008).

    Article  CAS  PubMed  Google Scholar 

  46. Morris, R.J., Perrakis, A. & Lamzin, V.S. ARP/wARP and automatic interpretation of protein electron density maps. Methods Enzymol. 374, 229–244 (2003).

    Article  CAS  PubMed  Google Scholar 

  47. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255 (1997).

    Article  CAS  PubMed  Google Scholar 

  48. Winn, M.D. et al. Overview of the CCP4 suite and current developments. Acta Crystallogr. D Biol. Crystallogr. 67, 235–242 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Emsley, P., Lohkamp, B., Scott, W.G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Winn, M.D., Isupov, M.N. & Murshudov, G.N. Use of TLS parameters to model anisotropic displacements in macromolecular refinement. Acta Crystallogr. D Biol. Crystallogr. 57, 122–133 (2001).

    Article  CAS  PubMed  Google Scholar 

  51. Davis, I.W. et al. MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res. 35, W375–83 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Krissinel, E. & Henrick, K. Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 372, 774–797 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank C. Botting for mass spectrometric analysis, M. Agacan for analytical ultracentrifugation analysis and N. Wood for help with cloning. His-Ube1 was a kind gift from the Division of Signal Transduction Therapy, University of Dundee. The sequence encoding RNF4 ΔC in pLou3 vector was a kind gift from L. Shen, University of Dundee. A.P. was funded by a studentship from the Wellcome Trust. This work was supported by a grant to R.T.H. from Cancer Research UK. The structural biology was supported by the Scottish Funding Council (reference SULSA) and by the UK Biotechnology and Biological Sciences Research Council through the SPoRT initiative.

Author information

Authors and Affiliations

Authors

Contributions

A.P. purified RNF4 proteins, carried out crystallography, conducted biochemical analysis and interpreted the data. E.G.J. purified recombinant proteins and carried out ubiquitylation assays. S.A.M., K.A.J. and J.H.N. contributed to structural analysis. I.N. contributed to biochemical analysis. A.P., J.H.N. and R.T.H. wrote the paper. R.T.H. conceived the project and contributed to data interpretation.

Corresponding author

Correspondence to Ronald T Hay.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9 and Supplementary Methods (PDF 4007 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Plechanovová, A., Jaffray, E., McMahon, S. et al. Mechanism of ubiquitylation by dimeric RING ligase RNF4. Nat Struct Mol Biol 18, 1052–1059 (2011). https://doi.org/10.1038/nsmb.2108

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2108

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing