Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

An unusual dimeric structure and assembly for TLR4 regulator RP105MD-1

Abstract

RP105–MD-1 modulates the TLR4–MD-2-mediated, innate immune response against bacterial lipopolysaccharide (LPS). The crystal structure of the bovine 1:1 RP105–MD-1 complex bound to a putative endogenous lipid at 2.9 Å resolution shares a similar overall architecture to its homolog TLR4–MD-2 but assembles into an unusual 2:2 homodimer that differs from any other known TLR-ligand assembly. The homodimer is assembled in a head-to-head orientation that juxtaposes the N-terminal leucine-rich repeats (LRRs) of the two RP105 chains, rather than the usual tail-to-tail configuration of C-terminal LRRs in ligand-activated TLR dimers, such as TLR1–TRL2, TLR2–TLR6, TLR3–TLR3 and TLR4–TLR4. Another unusual interaction is mediated by an RP105-specific asparagine-linked glycan, which wedges MD-1 into the co-receptor binding concavity on RP105. This unique mode of assembly represents a new paradigm for TLR complexes and suggests a molecular mechanism for regulating LPS responses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overall architecture of the 2:2 sRP105–MD-1 complex.
Figure 2: sRP105 and MD-1 structures as observed in the 2:2 complex.
Figure 3: The sRP105–MD-1 primary interaction.
Figure 4: sRP105-specific glycan at Asn402.
Figure 5: The unique sRP105–MD-1 homodimerization interaction for assembly of the 2:2 complex.
Figure 6: Different organization of the 2:2 sRP105–MD-1 and LPS-bound 2:2 sTLR4–MD-2 homodimeric assemblies.
Figure 7: Two possible models for the interaction between RP105–MD-1 and TLR4–MD-2.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Bell, J.K. et al. Leucine-rich repeats and pathogen recognition in Toll-like receptors. Trends Immunol. 24, 528–533 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Takeda, K., Kaisho, T. & Akira, S. Toll-like receptors. Annu. Rev. Immunol. 21, 335–376 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Proell, M., Riedl, S.J., Fritz, J.H., Rojas, A.M. & Schwarzenbacher, R. The Nod-like receptor (NLR) family: a tale of similarities and differences. PLoS ONE 3, e2119 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Nakhaei, P., Genin, P., Civas, A. & Hiscott, J. RIG-I-like receptors: sensing and responding to RNA virus infection. Semin. Immunol. 21, 215–222 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. Kim, H.M. et al. Crystal structure of the TLR4-MD-2 complex with bound endotoxin antagonist Eritoran. Cell 130, 906–917 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Jin, M.S. et al. Crystal structure of the TLR1–TLR2 heterodimer induced by binding of a tri-acylated lipopeptide. Cell 130, 1071–1082 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Choe, J., Kelker, M.S. & Wilson, I.A. Crystal structure of human toll-like receptor 3 (TLR3) ectodomain. Science 309, 581–585 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Kang, J.Y. et al. Recognition of lipopeptide patterns by Toll-like receptor 2-Toll-like receptor 6 heterodimer. Immunity 31, 873–884 (2009).

    Article  CAS  PubMed  Google Scholar 

  9. Bell, J.K. et al. The molecular structure of the Toll-like receptor 3 ligand-binding domain. Proc. Natl. Acad. Sci. USA 102, 10976–10980 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Park, B.S. et al. The structural basis of lipopolysaccharide recognition by the TLR4-MD-2 complex. Nature 458, 1191–1195 (2009).

    Article  CAS  PubMed  Google Scholar 

  11. Liu, L. et al. Structural basis of toll-like receptor 3 signaling with double-stranded RNA. Science 320, 379–381 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Shimazu, R. et al. MD-2, a molecule that confers lipopolysaccharide responsiveness on Toll-like receptor 4. J. Exp. Med. 189, 1777–1782 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nagai, Y. et al. Essential role of MD-2 in LPS responsiveness and TLR4 distribution. Nat. Immunol. 3, 667–672 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Poltorak, A. et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282, 2085–2088 (1998).

    Article  CAS  PubMed  Google Scholar 

  15. Ohto, U., Fukase, K., Miyake, K. & Satow, Y. Crystal structures of human MD-2 and its complex with antiendotoxic lipid IVa. Science 316, 1632–1634 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Mullarkey, M. et al. Inhibition of endotoxin response by e5564, a novel Toll-like receptor 4-directed endotoxin antagonist. J. Pharmacol. Exp. Ther. 304, 1093–1102 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Miyake, K., Yamashita, Y., Ogata, M., Sudo, T. & Kimoto, M. RP105, a novel B cell surface molecule implicated in B cell activation, is a member of the leucine-rich repeat protein family. J. Immunol. 154, 3333–3340 (1995).

    CAS  PubMed  Google Scholar 

  18. Miura, Y. et al. Molecular cloning of a human RP105 homologue and chromosomal localization of the mouse and human RP105 genes (Ly64 and LY64). Genomics 38, 299–304 (1996).

    Article  CAS  PubMed  Google Scholar 

  19. Fugier-Vivier, I. et al. Molecular cloning of human RP105. Eur. J. Immunol. 27, 1824–1827 (1997).

    Article  CAS  PubMed  Google Scholar 

  20. Divanovic, S. et al. Negative regulation of Toll-like receptor 4 signaling by the Toll-like receptor homolog RP105. Nat. Immunol. 6, 571–578 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Miura, Y. et al. RP105 is associated with MD-1 and transmits an activation signal in human B cells. Blood 92, 2815–2822 (1998).

    CAS  PubMed  Google Scholar 

  22. Miyake, K. et al. Mouse MD-1, a molecule that is physically associated with RP105 and positively regulates its expression. J. Immunol. 161, 1348–1353 (1998).

    CAS  PubMed  Google Scholar 

  23. Nagai, Y. et al. Requirement for MD-1 in cell surface expression of RP105/CD180 and B-cell responsiveness to lipopolysaccharide. Blood 99, 1699–1705 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Nagai, Y. et al. The radioprotective 105/MD-1 complex links TLR2 and TLR4/MD-2 in antibody response to microbial membranes. J. Immunol. 174, 7043–7049 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Ogata, H. et al. The toll-like receptor protein RP105 regulates lipopolysaccharide signaling in B cells. J. Exp. Med. 192, 23–29 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Divanovic, S. et al. Regulation of TLR4 signaling and the host interface with pathogens and danger: the role of RP105. J. Leukoc. Biol. 82, 265–271 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Divanovic, S. et al. Inhibition of TLR-4/MD-2 signaling by RP105/MD-1. J. Endotoxin Res. 11, 363–368 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Blumenthal, A. et al. RP105 facilitates macrophage activation by Mycobacterium tuberculosis lipoproteins. Cell Host Microbe 5, 35–46 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hindle, K.L., Bella, J. & Lovell, S.C. Quantitative analysis and prediction of curvature in leucine-rich repeat proteins. Proteins 77, 342–358 (2009).

    Article  CAS  PubMed  Google Scholar 

  30. Bublitz, M. et al. Crystal structure and standardized geometric analysis of InlJ, a listerial virulence factor and leucine-rich repeat protein with a novel cysteine ladder. J. Mol. Biol. 378, 87–96 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. Enkhbayar, P., Kamiya, M., Osaki, M., Matsumoto, T. & Matsushima, N. Structural principles of leucine-rich repeat (LRR) proteins. Proteins 54, 394–403 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Harada, H., Ohto, U. & Satow, Y. Crystal structure of mouse MD-1 with endogenous phospholipid bound in its cavity. J. Mol. Biol. 400, 838–846 (2010).

    Article  CAS  PubMed  Google Scholar 

  33. Yoon, S.I., Hong, M., Han, G.W. & Wilson, I.A. Crystal structure of soluble MD-1 and its interaction with lipid IVa. Proc. Natl. Acad. Sci. USA 107, 10990–10995 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Altmann, F., Staudacher, E., Wilson, I.B. & Marz, L. Insect cells as hosts for the expression of recombinant glycoproteins. Glycoconj. J. 16, 109–123 (1999).

    Article  CAS  PubMed  Google Scholar 

  35. Aeed, P.A. & Elhammer, A.P. Glycosylation of recombinant prorenin in insect cells: the insect cell line Sf9 does not express the mannose 6-phosphate recognition signal. Biochemistry 33, 8793–8797 (1994).

    Article  CAS  PubMed  Google Scholar 

  36. Lawrence, M.C. & Colman, P.M. Shape complementarity at protein/protein interfaces. J. Mol. Biol. 234, 946–950 (1993).

    Article  CAS  PubMed  Google Scholar 

  37. Walter, T.S. et al. Lysine methylation as a routine rescue strategy for protein crystallization. Structure 14, 1617–1622 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Jentoft, N. & Dearborn, D.G. Protein labeling by reductive alkylation. Methods Enzymol. 91, 570–579 (1983).

    Article  CAS  PubMed  Google Scholar 

  39. Jin, M.S. & Lee, J.O. Application of hybrid LRR technique to protein crystallization. BMB Rep 41, 353–357 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  PubMed  Google Scholar 

  41. Sheldrick, G.M. A short history of SHELX. Acta Crystallogr. A 64, 112–122 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Cowtan, K. ′dm′: an automated procedure for phase improvement by density modification. Joint CCP4 and ESF-EACBM Newslett. on Protein Crystallogr. 31, 34–38 (1994).

    Google Scholar 

  43. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  PubMed  Google Scholar 

  44. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255 (1997).

    Article  CAS  PubMed  Google Scholar 

  45. McCoy, A.J. et al. Phaser crystallographic software. J. Appl. Crysttallogr. 40, 658–674 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R.L. Stanfield (The Scripps Research Institute) and Y.S. Choo (Sanford-Burnham Medical Research Institute) for critical comments on the manuscript, R.L. Stanfield (The Scripps Research Institute), H. Tien and D. Marciano (The Joint Center for Structural Genomics) for automated crystal screening, and X. Dai and M.A. Elsliger (The Scripps Research Institute) for expert technical assistance. The work was supported by US National Institutes of Health grant AI042266 (to I.A.W.) and the Skaggs Institute for Chemical Biology. X-ray diffraction datasets were collected at the Stanford Synchrotron Radiation Lightsource beamline 9-2 and the Advanced Photon Source beamline 23ID-B. This is manuscript no. 20749 from The Scripps Research Institute.

Author information

Authors and Affiliations

Authors

Contributions

S.Y. and I.A.W. designed experiments. S.Y. and M.H. conducted experiments. S.Y., M.H. and I.A.W. analyzed data and wrote the manuscript.

Corresponding author

Correspondence to Ian A Wilson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 (PDF 5704 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoon, Si., Hong, M. & Wilson, I. An unusual dimeric structure and assembly for TLR4 regulator RP105MD-1. Nat Struct Mol Biol 18, 1028–1035 (2011). https://doi.org/10.1038/nsmb.2106

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2106

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing